

Limits and Derivatives

Introduction

 Calculus is that branch of mathematics which mainly deals with the study of change in the value of a function as the points in the domain change.

Limits

- In general as $x \to a$, $f(x) \to l$, then l is called limit of the function f(x)
- Symbolically written as $\lim_{x \to a} f(x) = l$.
- For all the limits, function should assume at a given point x = a
- The two ways x could approach a number an either from left or from right, i.e., all the values of x near a could be less than a or could be greater than a.
- The two types of limits
 - o Right hand limit
 - Value of f(x) which is dictated by values of f(x) when x tends to from the right.
 - o Left hand limit.
 - Value of f(x) which is dictated by values of f(x) when x tends to from the left.
- In this case the right and left hand limits are different, and hence we say that the limit of f(x) as x tends to zero does not exist (even though the function is defined at 0).

Algebra of limits

Theorem 1

Let f and g be two functions such that both $\lim_{x\to a} f(x)$ and $\lim_{x\to a} g(x)$ exist, then

o Limit of sum of two functions is sum of the limits of the function s,i.e

$$\lim_{x\to a} [f(x) + g(x)] = \lim_{x\to a} f(x) + \lim_{x\to a} g(x).$$

o Limit of difference of two functions is difference of the limits of the functions, i.e.

$$\lim_{x \to a} [f(x) - g(x)] = \lim_{x \to a} f(x) - \lim_{x \to a} g(x)$$

o Limit of product of two functions is product of the limits of the functions, i.e.,

$$\lim_{x \to a} [f(x) \cdot g(x)] = \lim_{x \to a} f(x) \cdot \lim_{x \to a} g(x).$$

o Limit of quotient of two functions is quotient of the limits of the functions (whenever the denominator is non zero), i.e.,

$$\lim_{x \to a} \frac{f(x)}{g(x)} = \frac{\lim_{x \to a} f(x)}{\lim_{x \to a} g(x)}$$

o In particular as a special case of (iii), when g is the constant function such that $g(x) = \lambda$, for some real number λ , we have

$$\lim_{x \to a} \left[(\lambda.f)(x) \right] = \lambda.\lim_{x \to a} f(x).$$

Limits of polynomials and rational functions

• A function f is said to be a polynomial function if f(x) is zero function or if $f(x) = a_0 + a_1 x + a_2 x^2 + \ldots + a_n x^n$, where $a_i S$ is are real numbers such that an $\neq 0$ for some natural number n.

CLASS24

• We know that $\lim_{x \to a} x = a$. $\lim_{x \to a} x^2 = \lim_{x \to a} (x.x) = \lim_{x \to a} x \cdot \lim_{x \to a} x = a \cdot a = a^2$ Hence,

$$\lim_{x \to a} x^n = a^n$$

• Let $f(x) = a_0 + a_1 x + a_2 x^2 + ... + a_n x^n$ be a polynomial function

$$\lim_{x \to a} f(x) = \lim_{x \to a} \left[a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n \right]$$

$$= \lim_{x \to a} a_0 + \lim_{x \to a} a_1 x + \lim_{x \to a} a_2 x^2 + \dots + \lim_{x \to a} a_n x^n$$

$$= a_0 + a_1 \lim_{x \to a} x + a_2 \lim_{x \to a} x^2 + \dots + a_n \lim_{x \to a} x^n$$

$$= a_0 + a_1 a + a_2 a^2 + \dots + a_n a^n$$

$$= f(a)$$

• A function f is said to be a rational function, if $f(x) = \frac{g(x)}{h(x)}$ where g(x) and h(x) are polynomials such that $h(x) \neq 0$.

Then

$$\lim_{x \to a} f(x) = \lim_{x \to a} \frac{g(x)}{h(x)} = \frac{\lim_{x \to a} g(x)}{\lim_{x \to a} h(x)} = \frac{g(a)}{h(a)}$$

- However, if h(a) = 0, there are two scenarios
 - o when $g(a) \neq 0$
 - limit does not exist
 - o When g(a) = 0.
 - $g(x) = (x a)^k g_1(x)$, where k is the maximum of powers of (x a) in g(x)
 - Similarly, $h(x) = (x a)^1 h_1(x)$ as h(a) = 0. Now, if $k \ge 1$, we have

$$\lim_{x \to a} f(x) = \frac{\lim_{x \to a} g(x)}{\lim_{x \to a} h(x)} = \frac{\lim_{x \to a} (x - a)^k g_1(x)}{\lim_{x \to a} (x - a)^l h_1(x)}$$

$$= \frac{\lim_{x \to a} (x - a)^{(k-l)} g_1(x)}{\lim_{x \to a} h_1(x)} = \frac{0.g_1(a)}{h_1(a)} = 0$$

If k < l, the limit is not defined.

Theorem 2

For any positive integer n

$$\lim_{x \to a} \frac{x^n - a^n}{x - a} = na^{n-1}$$

Proof

Dividing $(x^n - a^n)$ by (x - a), we see that

$$x^{n} - a^{n} = (x-a)(x^{n-1} + x^{n-2}a + x^{n-3}a^{2} + ... + xa^{n-2} + a^{n-1})$$

$$\lim_{x \to a} \frac{x^n - a^n}{x - a} = \lim_{x \to a} (x^{n-1} + x^{n-2} a + x^{n-3} a^2 + \dots + x a^{n-2} + a^{n-1})$$

$$= a^{n-1} + a a^{n-2} + \dots + a^{n-2} (a) + a^{n-1}$$

$$= a^{n-1} + a^{n-1} + \dots + a^{n-1} + a^{n-1} (n \text{ terms})$$

$$= na^{n-1}$$

Note:

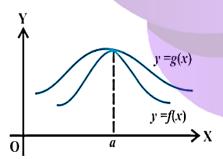
The expression in the above theorem for the limit is true even if n is any rational number and a is positive.

Limits of Trigonometric Functions

Theorem 3

Let f and g be two real valued functions with the same domain such that $f(x) \le g(x)$ for all x in the domain of definition,

For some a, if both $\lim_{x\to a} f(x)$ and $\lim_{x\to a} g(x)$ exist, then $\lim_{x\to a} f(x) \le \lim_{x\to a} g(x)$

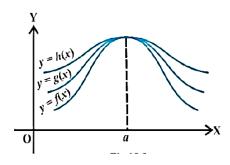


Theorem 4 (Sandwich Theorem)

Let f, g and h be real functions such that $f(x) \le g(x) \le h(x)$ for all x in the common domain of definition.

For some real number a, if $\lim_{x\to a} f(x) = l = \lim_{x\to a} h(x)$, then $\lim_{x\to a} g(x) = l$.

CLASS24

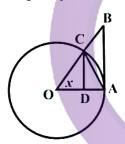


To Prove:

$$\cos x < \frac{\sin x}{x} < 1 \quad \text{for } 0 < |x| < \frac{\pi}{2}$$

Proof:

We know that $\sin(-x) = -\sin x$ and $\cos(-x) = \cos x$. Hence, it is sufficient to prove the inequality for



- is the centre of the unit circle such that the angle AOC is x radians and Line segments B A and CD are perpendiculars to $\frac{1}{2}$
- Area of $\triangle OAC$ < Area of sector OAC < Area of $\triangle OAB$

:LASS24

i.e.,
$$\frac{1}{2}$$
OA.CD $< \frac{x}{2\pi}$. π .(OA)² $< \frac{1}{2}$ OA.AB.

i.e.,
$$CD \le x \cdot OA \le AB$$
.

From \triangle OCD,

$$\sin x = \frac{\text{CD}}{\text{OA}}$$
 (since OC = OA) and hence CD = OA sin x. Also $\tan x = \frac{\text{AB}}{\text{OA}}$ and

hence

$$AB = OA$$
. tan x. Thus

OA sin
$$x <$$
 OA. $x <$ OA. tan x .

Since length OA is positive, we have

$$\sin x < x < \tan x$$
.

Since $0 < x < \frac{\pi}{2}$, sinx is positive and thus by dividing throughout by sin x, we have

$$1 < \frac{x}{\sin x} < \frac{1}{\cos x}$$
. Taking reciprocals throughout, we have $\sin x < x < \tan x$

Since $0 < x < \frac{\pi}{2}$, sinx is positive and thus by dividing throughout by sin x, we have

$$1 < \frac{x}{\sin x} < \frac{1}{\cos x}$$
. Taking reciprocals throughout, we have

$$\cos x < \frac{\sin x}{x} < 1$$

Hence Proved

The following are two important limits

(i)
$$\lim_{x\to 0} \frac{\sin x}{x} = 1$$

(i)
$$\lim_{x \to 0} \frac{\sin x}{x} = 1$$
. (ii) $\lim_{x \to 0} \frac{1 - \cos x}{x} = 0$

Proof:

The function x is sandwiched between the function $\cos x$ and the constant function which takes value 1.

Since $\lim_{x\to 0} \cos x = 1$, also we know that $1 - \cos x = 2 \sin^2\left(\frac{x}{2}\right)$.

$$\lim_{x \to 0} \frac{1 - \cos x}{x} = \lim_{x \to 0} \frac{2\sin^2\left(\frac{x}{2}\right)}{x} = \lim_{x \to 0} \frac{\sin\left(\frac{x}{2}\right)}{\frac{x}{2}} \cdot \sin\left(\frac{x}{2}\right)$$

$$= \lim_{x \to 0} \frac{\sin\left(\frac{x}{2}\right)}{\frac{x}{2}} \cdot \lim_{x \to 0} \sin\left(\frac{x}{2}\right) = 1.0 = 0$$

Using the fact that
$$x \to 0$$
 is equivalent to $\frac{x}{2} \to 0$. This may be justified by putting $y = \frac{x}{2}$

Derivatives

Some Real time Applications

- o People maintaining a reservoir need to know when will a reservoir overflow knowing the depth of the water at several instances of time
- Rocket Scientists need to compute the precise velocity with which the satellite needs to be shot out from the rocket knowing the height of the rocket at various times.
- Financial institutions need to predict the changes in the value of a particular stock knowing its present value.
- o Helpful to know how a particular parameter is changing with respect to some other
- Derivative of a function at a given point in its domain of definition.

Definition 1

- o Suppose f is a real valued function and a is a point in its domain of definition.
- o The derivative of f at a is defined by

$$\lim_{h \to 0} \frac{f(a+h) - f(a)}{h}$$

Provided this limit exists.

o Derivative of f(x) at a is denoted by f(a)

Definition 2

o Suppose f is a real valued function, the function defined by

$$\lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$
Wherever limit exists is defined to be derivative of f at x

- o Denoted by f(x).
- This definition of derivative is also called the first principle of derivative.

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

Thus

$$\frac{d}{dx}(f(x))$$

- o f'(x) is denoted by $\frac{d}{dx}(f(x))$ or if y = f(x), it is denoted by dy/dx.
- o This is referred to as derivative of f(x) or y with respect to x.
- o It is also denoted by D (f(x)).
- Further, derivative of f at x = a

is also denoted by
$$\frac{d}{dx} f(x) \Big|_{a}$$
 or $\frac{df}{dx}\Big|_{a}$ or even $\left(\frac{df}{dx}\right)_{x=a}$.

Theorem 5

- Let f and g be two functions such that their derivatives are defined in a common domain. Then
 - o Derivative of sum of two functions is sum of the derivatives of the functions.

$$\frac{d}{dx} \Big[f(x) + g(x) \Big] = \frac{d}{dx} f(x) + \frac{d}{dx} g(x).$$

o Derivative of difference of two functions is difference of the derivatives of the functions.

$$\frac{d}{dx}\Big[f(x)-g(x)\Big] = \frac{d}{dx}f(x) - \frac{d}{dx}g(x).$$

o Derivative of product of two functions is given by following product rule.

$$\frac{d}{dx}\Big[f(x) \cdot g(x)\Big] = \frac{d}{dx}f(x) \cdot g(x) + f(x) \cdot \frac{d}{dx}g(x)$$

o Derivative of quotient of two functions is given by the following quotient rule (whenever the denominator is non-zero).

$$\frac{d}{dx}\left(\frac{f(x)}{g(x)}\right) = \frac{\frac{d}{dx}f(x) \cdot g(x) - f(x)}{\left(g(x)\right)^2} \frac{\frac{d}{dx}g(x)}{\left(g(x)\right)^2}$$

- o Let u = f(x) = and v = g(x).
 - Product Rule:
 - (uv) ' = u' v+ uv'.
 - Also referred as Leibnitz rule for differentiating product of functions
 - Quotient rule

$$\left(\frac{u}{v}\right)' = \frac{u'v - uv'}{v^2}$$

Derivative of the function f(x) = x is the constant

Theorem 6

- Derivative of $f(x) = x^n$ is nx^{n-1} for any positive integer n.
- o Proof
 - o By definition of the derivative function, we have

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} = \lim_{h \to 0} \frac{(x+h)^n - x^n}{h}$$

Binomial theorem tells that $(x+h)^n = \binom{n}{1} x^n + \binom{n}{1} x^{n-1} h + \dots + \binom{n}{1} h^n$ and hence $(x+h)^n - x^n = h(nx^{n-1} + \dots + h^{n-1})$. Thus

$$\frac{df(x)}{dx} = \lim_{h \to 0} \frac{(x+h)^n - x^n}{h}$$

$$= \lim_{h \to 0} \frac{h(nx^{n-1} + \dots + h^{n-1})}{h}$$

$$= \lim_{h \to 0} (nx^{n-1} + \dots + h^{n-1}), = nx^{n-1}.$$

o This can be proved as below alternatively

CLASS24

$$\frac{d}{dx}(x^n) = \frac{d}{dx}(x \cdot x^{n-1})$$

$$= \frac{d}{dx}(x) \cdot (x^{n-1}) + x \cdot \frac{d}{dx}(x^{n-1}) \text{ (by product rule)}$$

$$= 1 \cdot x^{n-1} + x \cdot ((n-1)x^{n-2}) \text{ (by induction hypothesis)}$$

$$= x^{n-1} + (n-1)x^{n-1} = nx^{n-1}.$$

Theorem 7

o Let $f(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0$ be a polynomial function, where a_i s are all real numbers and $a_n \neq 0$. Then, the derivative function is given by

$$\frac{df(x)}{dx} = na_n x^{n-1} + (n-1)a_{n-1} x^{n-2} + \dots + 2a_2 x + a_1.$$

Quick Reference:

· For functions f and g the following holds:

$$\lim_{x \to a} [f(x) \pm g(x)] = \lim_{x \to a} f(x) \pm \lim_{x \to a} g(x)$$

$$\lim_{x \to a} [f(x), g(x)] = \lim_{x \to a} f(x) \cdot \lim_{x \to a} g(x)$$

$$\lim_{x \to a} \left[\frac{f(x)}{g(x)} \right] = \frac{\lim_{x \to a} f(x)}{\lim_{x \to a} g(x)}$$

Following are some of the standard limits

$$\begin{split} \lim_{x \to a} \frac{x^n - a^n}{x - a} &= na^{n-1} \\ \lim_{x \to 0} \frac{\sin x}{x} &= 1, \lim_{x \to a} \frac{\sin(x - a)}{x - a} &= 1 \\ \lim_{x \to 0} \frac{1 - \cos x}{x} &= 0 \\ \lim_{x \to 0} \frac{\tan x}{x} &= 1, \lim_{x \to a} \frac{\tan(x - a)}{x - a} &= 1 \\ \lim_{x \to 0} \frac{\sin^{-1} x}{x} &= 1, \lim_{x \to 0} \frac{\tan^{-1} x}{x} &= 1 \\ \lim_{x \to 0} \frac{a^x - 1}{x} &= \log_e a, a > 0, a \neq 1 \end{split}$$

- Derivatives
 - o The derivative of a function f at a is defined by

$$f'(a) = \lim_{h o 0} rac{f(a+h) - f(a)}{h}$$

o Derivative of a function f at any point x is defined by

$$f'(x) = rac{df(x)}{dx} = \lim_{h o 0} rac{f(x+h)-f(x)}{h}$$

• For functions u and v the following holds:

$$(u\pm v)'=u'\pm v'$$

$$(uv)'=u'v+uv' \qquad \Rightarrow \qquad rac{d}{dx}\left(uv
ight)=u.\,rac{dv}{dx}+v.\,rac{du}{dx}$$

$$\left(\frac{u}{v}\right)' = \frac{u'v - uv'}{v^2}$$
 \Rightarrow $\frac{d}{dx}\left(\frac{u}{v}\right) = \frac{v \cdot \frac{du}{dx} - u \cdot \frac{dv}{dx}}{v^2}$

• Following are some of the standard derivatives

$$\frac{d}{dx}(x^n) = nx^{n-1}$$

$$\frac{d}{dx}(\sin x) = \cos x$$

$$\frac{d}{dx}(\cos x) = -\sin x$$

$$\frac{d}{dx}(\tan x) = \sec^2 x$$

$$\frac{d}{dx}\left(\cot x\right) = -\cos ec^2x$$

$$\frac{d}{dx}(\sec x) = \sec x. \tan x$$

$$\frac{d}{dx}(\cos ecx) = -\cos ecx.\cot x$$