CLASS24

Work and Energy

- · Condition for scientifically work to be done
- o There must be a displacement
- Displacement of an object must be in the direction of applied force
- Work done by a constant force is defined as Work = Force × Displacement [along the direction of force]

$$W = F \times s$$
 [Unit – Joule, 1 J = 1 N-m]

- Work done against gravity = Weight × Height = mgh
- Condition for the Negative Work done

Force and displacement must be in opposite direction

- Conditions for no work done
- No displacement (e.g. a boy pushes the wall)
- Displacement occurs perpendicularly to the applied force(e.g. in case of circular motion, there is no work done by the centripetal force)
- Energy: Capacity to do work is called energy.
- There are various form of energy e.g. heat energy, mechanical energy, nuclear energy, light energy etc.
- Mechanical Energy: It is caused by the motion or the position and configuration of the object.
- Kinetic energy: A body possesses kinetic energy by virtue of its motion.

$$=\frac{1}{2} mv^2$$

Proof

$$v^2 - u^2 = 2as$$

CLASS24

$$z = \frac{v^2 - u^2}{2a}$$

$$W = ma \times \frac{v^2 - u^2}{2a}$$

$$= \frac{1}{2}m(v^2 - u^2)$$

$$= \frac{1}{2}mv^2 [\text{when } u = 0]$$

The kinetic energy of the wind is used in windmills to generate electricity.

Relationship between kinetic energy and momentum

K.E. =12pm2p2 =2mK=2mK (where K =Kinetic energy)

- Potential energy: A body possesses potential energy by virtue of its configuration or position.
- Gravitational potential energy

PE = mgh [h = height of object from the earth surface]

Elastic potential energy

 $U = \frac{1}{2}kx^2$ [Where x = compression or elongation in the spring]

- · Law of conservation of energy
- The total amount of energy in a system always remains constant.

$$mgh + \frac{1}{2}mv^2 = constant$$

Power: It is defined as rate of doing work.

$$P = \frac{W}{t} \left(\text{Unit - Watt, } 1W = \frac{U}{1s} \right)$$

1Horse Power = 746Watts

For electric appliances,

power = voltage × current

Energy consumed in time $t = Power \times time$.

Power is also defined as the product of force and average speed.

CLASS24

$P=F\times v$

- The commercial unit of energy is kilowatt-hour (kWh). 1kWh = 3.6 × 10⁶ J
- The amount of electrical energy consumed in our house is expressed in terms of 'units',
 where

