Sample Paper - 3

GENERAL INSTRUCTIONS

All questions are compulsory.

The question paper consist of 30 questions divided into four sections A, B, C and D. Section A comprises of 6 questions of 1 mark each. Section B comprises of 6 questions of 2 marks each, Section C comprises of 10 questions of 3 marks each and Section D comprises of 8 questions of 4 marks each.

There is no overall choice.

Use of calculator is not allowed.

SECTION-A

(1 mark each)

- 1. Check the divisibility of the following numbers by 9:
 - (a) 108

- (b) 616
- 2. Multiply the following:
 - (a) $15xy^2$, $17yz^2$
 - (b) $-5a^2bc,11ab,13abc^2$
- **3.** Is 500 a perfect cube?
- **4.** What is the usual form for 2.3×10^{-10} ?
- **5.** Factorise : $9x^2 1$
- **6.** What is a parallelepiped?

SECTION-B

(2 marks each)

7. Find the volume of the following cuboids figure.

(a)

(b)

- **8.** Represent the number $\frac{7}{4}$ on the number line.
- **9.** Using prime factorisation, find the cube root of 5832.
- **10.** Factorise the following:
 - (a) $18+11x+x^2$
 - (b) $y^2 2y 15$
- **11.** A machinery worth Rs. 10,500 depreciated by 5%. Find its value after one year.
- 12. Using a suitable identity to get the product

$$\left(3x-\frac{1}{3}\right)\left(3x-\frac{1}{3}\right).$$

SECTION-C

(3 marks each)

- **13.** Verify x + y = y + x, if $x = \frac{-3}{16}$ and $y = \frac{1}{9}$.
- **14.** If 25 metres of costs Rs. 337.50, then
 - (a) What will be the cost of 40 metres of the same type of cloth?
 - (b) What will be the length of the cloth bought for Rs. 810?
- 15. There is a narrow rectangular plot, reserved for a school, in Mahuli village. The length and breadth of the plot are in the ratio 11:4. At the rate Rs. 100 per metre it will cost the village panchayat Rs. 75000 to fence the plot. What are the dimensions of the plot?
- **16.** By what number should $(-8)^{-3}$ be multiplied so that the product may be equal to $(-6)^{-3}$?
- 17. Construct a quadrilateral ABCD, given AB = 5-1 cm, AD = 4 cm, BC = 2.5 cm, $\angle A$ = 60° and $\angle B$ = 85°.
- 18. Radius of a cylinder is r and the height is h. Find the change in the volume if the
 - (a) height is doubled
 - (b) height is doubled and the radius is halved
 - (c) height remains same and the radius is halved.
- **19.** The perimeters of two squares are 40 and 96 metres respectively. Find the perimeter of another square equal in area to the sum of the first two squares.
- **20.** The parallel sides of a trapezium are 40 cm and 20 cm. If its non-parallel sides are equal, each being 26 cm, find the area of the trapezium.
- **21.** A number is increased by 20% and then it is decreased by 20%. Find the net increase or decrease per cent.
- **22.** If a + b = 25 and $a^2 + b^2 = 225$, then find ab.

SECTION-D

(4 marks each)

23. A mixture of paint is prepared by mixing 1 part of red pigments with 8 parts of base. In the following table, find the parts of base that is needed to be added.

Part of red pigment	1	4	7	12	20
Part of base	8				

- **24.** Find the three rational numbers between $\frac{1}{2}$ and -2.
- 25. Factorise:
 - (a) $a^4 b^4$
- (b) $p^4 81$
- (c) $x^4 (y+2)^4$
- (d) $x^4 (x-z)^4$
- (e) $a^4 2a^2b^2 + b^4$
- **26.** (a) Divide 34 into two parts in such a way that $\left(\frac{4}{7}\right)^{th}$ of one part is equal to $\left(\frac{2}{5}\right)^{th}$ of the other.
 - (b) Which of the following equation are linear equation in one variable.
 - (a) $x^2 + x = 1$
- (b) $2x-7=\frac{2}{3}$
- (c) $x^2 + x = 10$
- (d) x-15=3x
- **27.** The cost of a notebook is Rs. 10. Draw a graph after making a table showing cost of 2, 3, 4... notebooks. Use it to find (a) the cost of 7 notebooks.
 - (b) the number of notebooks that can be purchased for Rs. 50.
- **28.** (a) Find the value of the expression $(81x^2 + 16y^2 72xy)$, when $x = \frac{2}{3}$ and $y = \frac{3}{4}$
 - (b) If a = 2 and b = 5, then verify $(a+b)^2 = a^2 + b^2 + 2ab$.
- **29.** (a) Find the amount of Rs. 50000 after 2 years compounded annually. The rate of interest being 8% p.a. during the first year and 9% p.a. during the second year. Also, find the compound interest.
 - (b) If (a) decreased value $=P\left(1-\frac{R}{100}\right)^n$ and (b) depreciated value $=P\left(1+\frac{R}{100}\right)^n$ then select right answer.
- **30.** If 51x 3 is a multiple of 9, where x is a digit, then that is the value of x?

Solutions

Section 'A'

(1 mark each)

2.

$$1+0+8=9$$

and 9 is divisible by 9

1/2

:. 108 is divisible by 9.

(b) 616

We have,

$$6+1+6=13$$

and 13 is not divisible by 9

1/2

(a)
$$15xy^{2} \times 17yz^{2} = (15 \times 17) \times x \times y^{2} \times y \times z^{2}$$
$$= 255xy^{3}z^{2}$$

1/2

(b)
$$-5a^{2}bc \times 11ab \times 13abc^{2} = (-5 \times 11 \times 13)a^{2}bc \times ab \times abc^{2}$$
$$= -715a^{4}b^{3}c^{3}$$

1/2

3.
$$500 = 5 \times 5 \times 5 \times 2 \times 2$$

1/2

- \therefore In the above prime factorisation 2×2 remain after grouping the prime factors in triples.
- :. 500 is not a perfect cube.

1/2

4.
$$2.3 \times 10^{-10} = 23 \times 10^{-1} \times 10^{-10}$$

1/2

$$= 23 \times 10^{-11}$$

1/2

5.
$$9x^2-1=(3x)^2-(1)^2$$

1/2

$$=(3x+1)(3x-1)$$

1/2

6. When the ends of a quadrilateral prism are parallelograms, then it is called a parallelepiped.

Section 'B'

(2 marks each)

1

(a) I = 8 cm, b = 3 cm, h = 2 cm7.

The volume of cuboid = $1 \times b \times h$

$$=8\times3\times2$$

The volume of cuboid = $48 cm^3$

1

Height = 3 cm = 0.03 mArea of rectangle part = $24 m^2$

The volume of cuboid = Area of rectangle part \times Height

$$=24m^2 \times 0.03m$$

The volume of cuboid = $0.72 m^3$

To represent $\frac{7}{4}$, we make 7 markings each of a distance equal to $\frac{1}{4}$ on the right of 0. The 7th point represent the 8.

rational number $\frac{7}{4}$ as shown in the figure.

The point A is $\frac{7}{4}$.

The prime factorisation of 5832 is 9.

0	E020
2	5832
2	2916
2	1458
3	729
3	243
3	81
3	27
3	9
3	3
	1

 $5832 = 2 \times 2 \times 2 \times 3 \times 3 \times 3 \times 3 \times 3 \times 3$

Therefore,
$$\sqrt[3]{5832} = \sqrt[3]{2 \times 2 \times 2 \times 3 \times 3 \times 3 \times 3 \times 3 \times 3}$$

$$=2\times3\times3$$

=181

 $18 + 11x + x^2 = x^2 + 11x + 18$ 10.

$$=x^2+(9+2)x+18$$

$$= x^2 + 9x + 2x + 18$$

$$=x(x+9)+2(x+9)$$

$$= (x + 9) (x + 2)$$

1/2

1/2

1

(b)
$$y^2 - 2y - 15 = y^2 - (5 - 3)y - 15$$

= $y^2 - 5y + 3y - 15$

1/2

$$= y(y-5)+3(y-5)$$
$$= (y-5)(y+3)$$

1/2

11.
$$P = Rs. 10,500$$

Reduction = 5% of Rs. 10,500 per year

$$=\frac{5}{100}\times10500\times1$$

Reduction = Rs. 525

Value after 1 year = 10,500 - 525

Cost value after 1 year = Rs. 9975

2

12. Using the identity
$$(a-b)^2 = a^2 - 2ab + b^2$$
,

We have,
$$\left(3x - \frac{1}{3}\right)\left(3x - \frac{1}{3}\right) = \left(3x - \frac{1}{3}\right)^2$$

= $(3x)^2 - 2(3x)\left(\frac{1}{3}\right) + \left(\frac{1}{3}\right)^2$

1

$$=9x^2-2x+\frac{1}{9}$$
.

1

Section 'C'

(3 marks each)

13.
$$x+y=-\frac{3}{16}+\frac{1}{9}$$

$$=\frac{-3\times9+1\times16}{144}$$

[: LCM of 16 and 9 is 144]

$$=\frac{-27+16}{144}=\frac{-11}{144}$$

1

$$y+x=\frac{1}{9}+\frac{-3}{16}$$

1

$$=\frac{1}{9}-\frac{3}{16}$$

$$=\frac{16\times 1-9\times 3}{144}$$

$$=\frac{16-27}{144}=-\frac{11}{144}$$

Length of cloth (m)	25	40
Cost of cloth (Rs.)	Rs.337.50	х

x + y = y + x.

1/2

1

1

1

1

Here, cost will be increase by increasing the length of cloth. Hence, it is directly proportional.

	1/2
$\frac{25}{337.5} = \frac{40}{x}$	
337.5 x	
$x = \frac{337.5 \times 40}{25} = Rs.540$	1

(b) Let the length of cloth be y m.

Length of cloth (m)	2 5	Y
Cost of cloth (Rs.)	Rs.337.50	810

Here, as the length will increase by increasing the amount so, it is directly proportional.

 $\frac{25}{337.5} = \frac{y}{810}$

$$\Rightarrow \qquad \qquad y = \frac{25 \times 810}{337.5}$$

 \Rightarrow y = 60 metres.

 $\therefore Perimeter of the plot = \frac{Total cost}{Cost of 1 meter} = \frac{75000}{100} = 750m$

We know that perimeter of rectangle = 2 (l + b)

.. According to question,

$$2(11x+4x)=750$$

or,
$$15x = \frac{750}{2}$$

or,
$$15x = 375$$

or,
$$x = \frac{375}{15}$$

or,
$$x = 25$$

Hence, length of plot = $11 \times 25 = 275 m$ and breadth of the plot $4 \times 25 = 100 m$.

16. Let the number be x

$$(-8)^{-3} \times x = (-6)^{-3}$$

$$\left(\frac{1}{-8}\right)^3 \times x = \left(\frac{1}{-6}\right)^3$$

$$-\frac{1}{512} \times x = -\frac{1}{216}$$

$$x = \frac{512}{216}$$

$$x = \frac{64}{27}$$

$$x = \left(\frac{4}{3}\right)^3$$

1

1

1

1

$$x = \left(\frac{3}{4}\right)^{-3}$$

- **17**. Steps of Construction:
 - (a) Draw AB = 5-1 cm.
 - (b) Construct $\angle XAB = 60^{\circ}$ at A.
 - (c) With A as centre and radius AD = 4 cm, cut off AD = 4 cm along AX.

- (d) Construct $\angle ABY = 85^{\circ}$ at B.
- (e) With B as centre and radius BC = 2.5 cm cut off BC = 2.5 cm along BY.
- (f) Join CD.

Thus, ABCD is the required quadrilateral.

2 Volume of cylinder = $\pi r^2 h$ 18.

- (a) Height is doubled i.e., h' =2h
 - Volume of cylinder = $\pi r^2 h'$

$$=\pi r^2(2h)$$

$$=2\pi r^2 h$$
 (Double of the original)

(b)
$$h' = 2h \text{ and } r' = \frac{r}{2}$$

Then volume of cylinder = $\pi r^2 h$

$$=\pi\left(\frac{r}{2}\right)^2\times 2h$$

$$=\pi\times\frac{r^2}{4}\times2h$$

$$= \frac{1}{2}\pi r^2 h$$
 (Half of the original)

(c)
$$r' = \frac{r}{2}$$
 unit

Volume of cylinder = $\pi r^{12} h$

$$=\pi\left(\frac{r}{2}\right)^2h$$

$$=\frac{1}{4}\pi r^2 h$$
 cubic unit

(One fourth of the original)

19. Let the sides of two squares are a and b respectively.

$$4a = 40$$
 and $4b = 96$

$$\therefore$$
 a = 10 m and b = 24 m

1 Given,

The perimeter of another square = Sum of area of two squares.

= Area of Ist square + Area of IInd square

$$=a^2+b^2$$

$$=(10)^2+(24)^2$$

$$=100 + 576$$

$$= 676 \, m^2$$

Hence, the perimeter of another square = 676 m.

1

1

20. Let ABCD be the trapezium such that AB = 40 cm and CD = 20 cm and AD = BC = 26 cm.

1/2

1/2

1/2

1/2

Now, draw CL | | AD

Then, ALCD is a parallelogram

In
$$\Delta CLB$$
, we have

$$CL = CB = 26 \text{ cm}$$

Therefore,
$$\triangle CLB$$
 is an isosceles triangle.

Draw altitude CM of
$$\Delta CLB$$
.

Since $\triangle CLB$ is an isosceles triangle.

So, CM is also the median.

Then, LM =
$$MB = \frac{1}{2}BL = \frac{1}{2} \times 20cm = 10cm$$

$$[as BL = AB - AL = (40 - 20) cm = 20 cm].$$

Applying Pythagoras theorem in ΔCLM ,

$$CL^2 = CM^2 + LW^2$$

$$26^2 = CM^2 + 10^2$$

$$CM^2 = 26^2 - 10^2$$

$$=(26-10)(26+10)$$

$$=16 \times 36 = 576$$

$$CM = \sqrt{576} = 24 \text{ cm}$$

Hence, the area of the trapezium = $\frac{1}{2}$ × (sum of parallel sides) × Height

$$=\frac{1}{2}(20+40)\times 24$$

$$=30 \times 24 = 720 \text{ cm}^2$$

1

1

21. Let the number be 100

Increase in the number
$$= 20\%$$
 of $100 = 20$

So, increased number = 100 + 20 = 120

Decrease in the number = 20% of 120

$$= \frac{20}{100} \times 120 = 24$$

So, new number = 120 - 24 = 96

Net decrease = 100 - 96 = 4

Hence, net decrease per cent

$$=\frac{4}{100} \times 100 = 4\%$$

22. We know that,

$$(a+b)^2 = a^2 + b^2 + 2ab$$

Here, a+b = 25, $a^2 + b^2 = 225$

$$\Rightarrow (25)^2 = 225 + 2ab$$

$$\Rightarrow 625 = 225 + 2ab$$

$$625 - 225 = 2ab$$

$$\Rightarrow$$
 400 = 2ab

$$\Rightarrow ab = \frac{400}{2}$$

$$\Rightarrow$$
 ab = 200

Section 'D'

(4 marks each)

- As the part of red pigment increases/ part of base also increases in the same ratio. It is a case of direct proportion, we make use of the relation of the type $\frac{x_1}{y_1} = \frac{x_2}{y_2} = \frac{x_3}{y_3}$...
 - (a) Here, $x_1 = 1, y_1 = 8$ and $x_2 = 4$

Therefore,

$$\frac{1}{8} = \frac{4}{y_2}$$

$$\Rightarrow \qquad y_2 = 4 \times 8 = 32$$

(b) Here, $x_2 4, y_2 = 32$ and $x_3 = 7$

$$\frac{x_2}{y_2} = \frac{x_3}{y_3}$$

$$\Rightarrow \frac{4}{32} = \frac{7}{43}$$

$$\Rightarrow y_3 = \frac{7 \times 32}{4} = 56$$

(c) Here, $x_3 = 7$, $y_3 = 56$ and $x_4 = 12$, $y_4 = ?$

$$\frac{x_3}{y_3} = \frac{x_4}{y_4}$$

1

1

1

1

$$\Rightarrow \frac{7}{56} = \frac{12}{y_4}$$

$$\Rightarrow \qquad y_4 = \frac{12 \times 56}{7}$$

$$\Rightarrow v_4 = 96$$

(d) Here, $x_4 = 12, y_4 = 96$ and $x_5 = 20, y_5 = ?$

$$\frac{12}{96} = \frac{202}{y_5}$$

$$\Rightarrow y_5 = \frac{20 \times 96}{12}$$

$$\Rightarrow$$
 $y_5 = 160$

The table is

Part of pigment	1	4	7	12	20
Part of Base	8	32	56	96	160

24. A rational number between $\frac{1}{2}$ and -2

$$= \left[\frac{1}{2} + (-2)\right] \div 2$$

$$= \left[\frac{1-4}{2}\right] \div 2$$

$$= \left[-\frac{3}{2}\right] \times \frac{1}{2} = -\frac{3}{4}$$

A rational number between $\frac{1}{2}$ and $\left(\frac{-3}{4}\right)$

$$= \left[\frac{1}{2} + \left(-\frac{3}{4}\right)\right] \div 2$$
$$= \left[\frac{2-3}{4}\right] \times \frac{1}{2}$$
$$= -\frac{1}{4} \times \frac{1}{2} = -\frac{1}{8}$$

A rational number between $\left(-\frac{3}{4}\right)$ and $\left(-2\right)$

$$= \left[\left(-\frac{3}{4} \right) + (-2) \right] \div 2$$
$$= \left[\frac{(-3) + (-8)}{4} \right] \times \frac{1}{2}$$
$$= \frac{-11}{4} \times \frac{1}{2} = \frac{-11}{8}$$

Thus, the three rational numbers are $\left(-\frac{3}{4}\right)$, $\left(-\frac{1}{8}\right)$ and $\left(-\frac{11}{8}\right)$.

25. (a) Using $a^2 - b^2 = (a - b)(a + b)$

$$a^{4}-b^{4} = (a^{2})^{2} - (b^{2})^{2}$$

$$= (a^{2}+b^{2})(a^{2}-b^{2})$$

$$= (a^{2}+b^{2})(a+b)(a-b)$$
(b)
$$p^{4}-81 = (p^{2}+b^{2})(a+b)(a+b)$$

1

(b)
$$p^4 - 81 = (p^2)^2 - (9)^2$$

= $(p^2 + 9)(p^2 - 9)[a^2 - b^2 = (a+b)(a-b)]$

$$=(p^2+9)(p-3)(p+3)$$

1/2

(c)
$$x^4 - (y+2)^4 = (x^2)^2 - [(y+2)^2]^2$$

$$= [(x^2) + (y+2)^2][(x^2) - (y+2)^2]$$

$$= [(x)^{2} + (y+2)^{2}][(x-y-z)(x+y+2)]$$
(d)
$$x^{4} - (x-z)^{4} = (x^{2})^{2} - [(x-z)^{2}]^{2}$$

$$= [x^2 - (x-z)^2][x^2 + (x-z)^2]$$

$$= [(x-x+z)(x+x-z)] [(x^2+(x-z)^2]$$

$$= z(2x-z) [x^2+(x)^2+(z)^2-2xz]$$

$$= r(2x - r)[2x^2 - 2x^2 + r^2]$$

$$= s(2x-s)[2x^2-2xz+s^2]$$

(e)
$$a^4 - 2a^2b^2 + b^4 = (a^2)^2 + (b^2)^2 - 2(a^2)(b^2)$$

$$=(a^2-b^2)$$

$$=(a^2-b^2)^2$$

1

$$= [(a^2 - b^2)(a^2 + b^2)]$$

$$= [(a - b)(a + b)(a^{2} + b^{2})]$$

$$= [(a - b)(a + b)(a^{2} + b^{2})]$$

(a) Let,
$$\int \int \int dx dx dx = x$$

Then, IInd part = (34 - x)

1

According to question,

$$\left(\frac{4}{7}\right)^{th}$$
 of lst part $\left(\frac{2}{5}\right)^{th}$ of IInd part

1

26.

$$\frac{4}{7}x = \frac{2}{5}(34-x)$$

or

$$20x = 14(34 - x),$$

[by cross multiplication]

$$20x = 14 \times 34 - 14x$$

$$20x + 14x = 14 \times 34$$

$$34x = 14 \times 34$$

$$x = \frac{14 \times 34}{34}$$

1

$$x=14$$

Hence, two parts are 14 and 34 -14 = 20

$$1st part = 14 and Und part = 20$$

(b) Linear equation in one variable are

(c)
$$2x-7=\frac{2}{3}$$
 and (d) $x-15=3x$

2

27. Let x: number of notebooks

y: cost of a notebook

1

1

1

1

1

1

х	1	2	3	4	5	6	7	8
У	10	20	30	40	50	60	70	80

- (a) The cost of 7 notebooks is equal to the coordinate of the point (7, 70), i.e. cost of 7 notebooks = Rs. 70
- (b) The number of notebooks that can be purchased for Rs. 50 is equal to the abscissa of the point (5, 50). Hence, 5 notebooks can be purchased for Rs. 50.

28. (a)
$$81x^2 + 16y^2 - 72xy = (9x)^2 + (4y)^2 - 2 \times 9x \times 4y$$

$$=(9x-4y)^2$$

$$[:: a^2 + b^2 - 2ab = (a - b)^2]$$

Now, putting $x = \frac{2}{3}$ and $y = \frac{3}{4}$, then

$$= \left(9 \times \frac{2}{3} - 4 \times \frac{3}{4}\right)^2$$
$$= (6 - 3)^2 - 3^2 - 9$$

$$=(6-3)^2=3^2=9$$

(b) Putting a = 2 and b = 5, then

$$L.H.S = (a+b)^2$$

$$=(2+5)^2=7^2=49$$

and

R.H.S =
$$= a^2 + b^2 + 2ab$$

$$= 2^2 + 5^2 + 2 \times 2 \times 5$$

$$=4+25+20=49$$

29. (a) Here P=' 50000, $R_1 = 8\%$ p.a. and $R_2 = 9\%$ p.a.

Since,
$$A = P\left(1 + \frac{R_1}{100}\right)\left(1 + \frac{R_2}{100}\right)$$

$$=50000 \times \left(1 + \frac{8}{100}\right) \left(1 + \frac{9}{100}\right)$$

$$=50000 \times \frac{27}{25} \times \frac{109}{100}$$

Amount = Rs.58860

Therefore
$$CI. = A - P$$

	= 58860 - 50000	
	=Rs. 8860	
	(b) (a) is right answer.	1
30 .	We have, the sum of the digits of $51x 3=5+l+x+3=9+x$	1
	Since, 51x 3 is divisible by 9.	
	∴ (9+x) must be divisible by 9.	1
	\therefore (9 + x) must be equal to 0 or 9 or 18 or 27 or	
	But x is a digit, then	
	$9 + x = 9 \Rightarrow x = 0$	
	$9 + x = 18 \Rightarrow x = 9$	1
	$x = 27 \Rightarrow x = 18$, which is not possible.	1
	The required value of $x = 0$ or 9	

