Sample Paper - 5

GENERAL INSTRUCTIONS

All questions are compulsory.

The question paper consist of 30 questions divided into four sections A, B, C and D. Section A comprises of 6 questions of 1 mark each. Section B comprises of 6 questions of 2 marks each, Section C comprises of 10 questions of 3 marks each and Section D comprises of 8 questions of 4 marks each.

There is no overall choice.

Use of calculator is not allowed.

SECTION-A

(1 mark each)

- 1. Find cube root of 13824.
- **2.** Factorise: $49x^2 36y^2$
- **3.** Simplify: $(2^5 \div 2^8) \times 2^{-7}$.
- **4.** Using contributive law, find the square of 43.
- 5. Is it possible to have a polyhedron with any given number of faces?
- **6.** Add the following:
 - (a) $7a^2bc, -3abc^2, 3a^2bc, 2abc^2$
 - (b) $5x^2 3xy + 4y^2 9$, $7y^2 + 5xy 2x^2 + 13$

SECTION-B

(2 marks each)

- **7.** Verify the following: $-\frac{5}{8} + \frac{3}{5} = \frac{3}{5} + \frac{-5}{8}$
- 8. The area of a parallelogram is 60 cm² and one of its altitude is 5 cm. Find length of the corresponding side?
- **9.** Factorise the following :

(a)
$$x^2 + 9x + 20$$

(b)
$$p^2 - 13p - 30$$

- **10.** Ramita bought a second hand two-wheeler for Rs. 15,000 and spent Rs. 500 on its repair. She sold it for Rs. 18,600. Find her loss or profit percent.
- 11. Square of 9x 7xy is:
- **12.** Find the square root of 784 by the long division method.

SECTION-C

(3 marks each)

- **13.** Find five rational number between.
 - (a) $\frac{2}{3}$ and $\frac{4}{5}$
- (b) $\frac{-3}{2}$ and $\frac{5}{3}$
- (c) $\frac{1}{4}$ and $\frac{1}{2}$
- 14. In a fort, 300 men had provisions for 90 days. After 20 days, 50 men left the fort. How long would the food last at the same rate?
- 15. In a two digit number, digit in units place is twice the digit in tens place. If 27 is added to it, the digits are reversed. Find the number.
- **16.** If $\frac{5m \times 5^3 \times 5^{-2}}{5^{-5}} = 5^{12}$, find m.
- 17. The length, breadth and height of a cuboidal reservoir is 7 m, 6 m and 15m respectively. 8400L of water is pumped out from the reservoir. Find the fall in the water level in the reservoir.
- 18. Construct the following quadrilaterals

LI=4 cm

IF=3cm

TL = 2.5 cm

LF = 4.5 cm

IT = 4 cm

- 19. How many 3 metre cubes can be cut from a cuboid measuring $18 \text{ m} \times 12 \text{ m} \times 9 \text{ m}$?
- 20. The area of a rectangular field whose length is twice its breadth is 2450 m2. Find the perimeter of the field.
- **21.** If $x \frac{1}{x} = 9$, then find the value $x^2 + \frac{1}{x^2}$.
- **22.** Find the amount which Ram will get on Rs. 4096, if he gave it for 18 months at $12\frac{1}{2}$ % per annum, interest being compounded half yearly.

SECTION-D

(4 marks each)

23. Principal = Rs. 1000, rate = 8% per annum. Fill in the following table and find which type of interest (simple or compound) changes in direct proportion with time period.

Time period	1	2	3
	Year	Years	Years
Simple Interest (in			
Rs.)			
Compound Interest			
(inRs.)			

24. Find the area of quadrilateral ABCD as shown in the figure.

- **25.** Madhulika thought of a number, doubled it and added 20 to it. On dividing the resulting number by 25, she gets 4. What is the number?
- **26.** Complete the following table.

Num	bers	Associative for				
		Addition	Sub	traction	Multiplication	Division
Rational	numbers					No
Integ	gers				Yes	
Whole n	umbers	Yes				
Natural r	numbers			No		

- 27. The adjoining pie chart gives the marks scored in an examination by a student in Hindi, English, Mathematics, Social Science and Science. If the total marks obtained by the students were 540, answer the following questions.
 - (a) In which subject did the student score 105 marks?

(**Hint**: for 540 marks, the central angle = 360°).

So, for 105 marks what is the central angle?

- (b) How many more marks were obtained by the student in Mathematics than in Hindi?
- (c) Examine whether the sum of the marks obtained in Social Science and Mathematics is more than that in Science and Hindi.

(Hint: Just study the central angles).

- **28.** I borrowed Rs. 12000 from Jamshed at 6% per annum simple interest for 2 years. If I borrowed this sum at 6% per annum compound interest, what extra amount would I have to pay?
- 29. Factorise and divide:

$$55(x^4-5x^3-24x^2)\div 5x(x-8)$$

- **30.** (a) Find $4x \times 5y \times 7z$
 - (b) First find $4x \times 5y$ and multiply it by 7z; or first find $5y \times 7z$ and multiply it by 4x.
 - (c) Is the result the same? What do you observe?
 - (d) Does the order in which you carry out the multiplication matter?

Solutions

Section 'A'

(1 marks each)

1.

	2	13824
	2	6912
	2	3456
	2	1728
	2	864
	2	432
	2	216
	2	108
	2	54
	3	27
	3	9
A	3	3
	1	

$$\therefore \sqrt[3]{13824} = 2 \times 2 \times 2 \times 3 = 24$$

1/2

 $\frac{1}{2}$

2.
$$49x^2 - 36y^2 = (7x)^2 - (6y)^2$$

= $(7x + 6y)(7x - 6y)$

1/2

[using
$$a^2-b^2 = (a+b) (a-b)$$
] ½

3.
$$\left(2^{5} \div 2^{8}\right) \times 2^{-7} = \left(\frac{2^{5}}{2^{8}}\right) \times 2^{-7}$$

$$(2^{-3}) \times 2^{-7} = 2^{-10}$$

4.

$$43 = 40 + 3$$

So, $43^2 = (40+3)^2$

$$= (40 + 3) (40 + 3)$$

$$=40(40+3)+3(40+3)$$

1/2

$$= 40 \times 40 + 40 \times 3 + 3 \times 40 + 3 \times 3$$

$$= 1600 + 240 + 9$$

= 1849

So,
$$43^2 = 1849$$

5. Yes, it is possible when the numbers of faces are greater than or equal to 4.

6. (a)
$$7a^2bc + (-3abc^2 + 3a^2bc + 2abc^2)$$

$$\Rightarrow 7a^{2}bc - 3abc^{2} + 3a^{2}bc + 2abc^{2}$$

$$\Rightarrow 10 \ a^{2}bc - abc^{2}$$
(b) $\left[5x^{2} - 3xy + 4y^{2} - 9\right] + \left[7y^{2} + 5xy - 2x^{2} + 13\right]$

$$\Rightarrow 5x^{2} - 3xy + 4y^{2} - 9 + 7y^{2} + 5xy - 2x^{2} + 13$$

$$\Rightarrow 3x^{2} + 11y^{2} + 2xy + 4$$
1/2

Section 'B'

(2 marks each)

 $\frac{1}{2}$

 $\frac{1}{2}$

1/2

 $\frac{1}{2}$

7. Verification : L.H.S. =
$$-\frac{5}{8} + \frac{3}{5}$$

= $\frac{-5 \times 5 + 3 \times 8}{40}$

$$=\frac{-25+24}{40}=\frac{-1}{40}$$

R.H.S.
$$=\frac{3}{5} + \frac{-5}{8}$$

$$=\frac{3\times8+(-5)\times5}{5}$$

$$=\frac{24-25}{40}=-\frac{1}{40}$$

$$\therefore$$
 L.H.S. = R.H.S. Hence Verified.

8. Area of parallelogram =
$$60 cm^2$$

altitude = 5 cm

Area = base \times height

$$60 = b \times 5$$

$$b = 12 \text{ cm}$$

Corresponding side is 12 cm. 2

9. (a)
$$x^2 + 9x + 20 = x^2 + (5+4)x + 20$$

$$= x^2 + 5x + 4x + 20$$

$$= x(x+5)+4(x+5)$$

$$=(x+5)(x+4)$$

(b)
$$p^2 - 13p - 30 = p^2 - (15 - 2) p - 30$$

$$= p^2 - 15p + 2p - 30$$

$$= p(p-15)+2(p-15)$$

$$=(p-15)(p+2)$$

10. Total Cost Price of the two-wheeler (C.P.)

= Rs. 15000 + overhead expenses

$$= Rs 15000 + Rs. 500$$

Selling Price (S.P.) = Rs 18600

$$\therefore$$
 S.P. > C.P. = She got profit

$$\therefore$$
 Profit = Rs. $18600 - 15500 =$ Rs. 3100

Now, Profit percent =
$$\frac{3100}{15500} \times 100\% = 20\%$$

Thus, she earned a profit of 20%.

11.
$$(9x-7xy)^2$$

Using
$$(a-b)^2 = a^2 + b^2 - 2ab$$

$$(9x)^2 + (7xy)^2 - 2 \times 9x \times 7xy$$

$$81x^2 + 49x^2y^2 - 126x^2y$$

		28	
4	2	7 84	_
		4	
	48	384 384	_
		_384	
		X	

Therefore, $\sqrt{784} = 28$

2

1

1

1

Section 'C'

(3 marks each)

13. (a)
$$\frac{2}{3}$$
 and $\frac{4}{5}$

LCM of 3 and 5 is 15

$$\therefore \frac{2}{3} \times \frac{5}{5} = \frac{10}{15} \text{ and } \frac{4}{5} \times \frac{3}{3} = \frac{12}{15}$$

Again,
$$\frac{10}{15} \times \frac{4}{4} = \frac{40}{60}$$
 and $\frac{12}{15} \times \frac{4}{4} = \frac{48}{60}$

 \therefore Five rational numbers between $\frac{2}{3}$ and $\frac{4}{5}$ are

$$\frac{41}{60}, \frac{42}{60}, \frac{43}{60}, \frac{44}{60}, \frac{45}{60}$$

(b)
$$\frac{-3}{2}$$
 and $\frac{5}{3}$

LCM of 2 and 3 is 6

$$\therefore \frac{-3}{2} \times \frac{3}{3} = \frac{-9}{6} \text{ and } \frac{5}{3} \times \frac{2}{2} = \frac{10}{6}$$

 \therefore Five rational number between $\frac{-3}{2}$ and $\frac{5}{3}$ are

$$\frac{-8}{6}, \frac{-7}{6}, 0, \frac{1}{6}, \frac{2}{6}$$

1

(c)
$$\frac{1}{4}$$
 and $\frac{1}{2}$ LCM of 4 and 2 is 4

$$\frac{1}{4} \times \frac{1}{1} = \frac{1}{4}$$
 and $\frac{1}{2} \times \frac{2}{2} = \frac{2}{4}$

Again,
$$\frac{1}{4} \times \frac{8}{8} = \frac{8}{32}$$
 and $\frac{2}{4} \times \frac{8}{8} = \frac{16}{32}$

 \therefore Five rational numbers between $\frac{1}{4}$ and $\frac{1}{2}$ are

$$\frac{9}{32}$$
, $\frac{10}{32}$, $\frac{11}{32}$, $\frac{12}{32}$, $\frac{13}{32}$

1

14. (a) Since, the remaining days =
$$(90-20)$$
 days

$$= 70 \, \mathrm{days}$$

But remaining number of men = 300-50

$$= 250$$

Let the number of days = x, then

Number of men	300	250
Number of days	70	Х

1

Clearly less men will have food for more days.

Then, by inverse variation,

$$\frac{250}{250} = \frac{70}{70}$$
$$x = \frac{70 \times 300}{250}$$
$$x = \frac{70 \times 6}{5}$$

$$x = 14 \times 6$$

$$= 84$$

Hence, the number of days = 84.

2

15. Let the tens place digit be x then the unit place digit =2x

Hence, two digit number =
$$10x + 2x$$

$$= 12x$$

1

According to condition,

$$12x + 27 = 10 \times 2x + x$$

1

$$12x + 27 = 20x + x$$

$$21x - 12x = 27$$

$$9x = 27$$

$$x = 3$$

Hence, two digit number = $12x = 12 \times 3$

$$= 36$$

1

16.
$$\frac{5^m \times 5^3 \times 5^{-2}}{5^{-5}} = 5^{12}$$

$$5^m \times 5^3 - 5^{-2} \times 5^5 = 5^{12}$$

$$5^m \times 5^{3-2+5} = 5^{12}$$

$$5^m \times 5^6 = 5^{12}$$

$$5^{m+6} = 5^{12}$$

1

On comparing powers m + 6 = 12

$$m = 12 - 6$$

$$m = 6$$

1

17. Here, l = 7 m, b = 6 m, h = 15 m

Volume of cuboid = $l \times b \times h$

$$= 7 \times 6 \times 15$$

$$= 630 \, m^3$$

Since, $1m^3 = 1000 L$

:. Capacity of water in reservoir = 630×1000

$$= 630000 L$$

1/2

Since, 8400 L water 5 pumped out

: Water left in reservoir =
$$630000 - 8400$$

$$= 621600 L$$

$$= 621.6 \, m^3$$

1

 $Water\ level\ = \frac{Volume}{Base\ Area}$

$$=\frac{621.6}{7\times6}$$

$$= 14.8 \text{ m}$$

1/2

Fall in water level =
$$15 - 14.8$$

$$= 0.2 \text{ m or } 20 \text{ cm}$$

1/2

18. Steps of construction :

- (i) Draw IT = 4 cm
- (ii) With I as centre and IF (= 3 cm) as radius, draw an arc.
- (iii) With T as centre and TL (=2.5 cm) as radius draw an arc.
- (iv) With I as centre and IL (= 4 cm) as radius draw an arc.
- (v) With L as centre and LF (= 4.5 cm) as radius draw an arc to intersect the arc.

1

1

1

1

1

19. \therefore Volume of cube = $(side)^3$

Given: side of cube = 3m

So, volume of cube = $(3)^3$

$$= 27 m^3$$

and Volume of cuboid = length \times breadth \times height

$$=18\times12\times9\ m^3$$

Therefore, Number of cubes = $\frac{Volume\ (cuboid)}{Volume\ (cube)}$

$$=\frac{18\times12\times9}{27}=72$$

20. Let the breadth of the field be x metres. Then, length of the field be 2x metres.

Therefore, area of the rectangular field

$$= (2x)(x) = (2x^2) m^2$$

Given that area is $2450 \, m^2$.

Therefore, $2x^2 = 2450$

$$x^2 = \frac{2450}{2}$$

$$x = \sqrt{1225}$$

or
$$x = 35 \text{ m}$$

Hence, breadth = 35 m and length 35×2

$$=70 \text{ m}$$

Perimeter to the field = 2(l+b)

$$=2(70+35) m$$

$$= 2 \times 105 m$$

$$=210\,\text{m}$$

 $x-\frac{1}{x}=9$

21.

Use the identity
$$(a-b)^2 = a^2 + b^2 - 2ab$$

$$\left(x - \frac{1}{x}\right)^2 = x^2 + \frac{1}{x^2} - 2 \times (x) \times \left(\frac{1}{2}\right)$$

$$(9)^2 = x^2 + \frac{1}{x^2} - 2$$

$$81 + 2 = x^2 + \frac{1}{x^2}$$

$$83 = x^2 + \frac{1}{x^2}$$

$$R = 12\frac{1}{2}\% = \frac{25}{2}\% = \frac{25}{4}$$

(Compounded half yearly)

Time (n) = $18 \text{ month} = \frac{1}{2} \text{ years} = 3 \text{ half years}$

$$A = P \left(1 + \frac{R}{100} \right)^n$$

1

$$=4096\left(1+\frac{25}{4\times100}\right)^3$$

$$=4096\left(1+\frac{1}{16}\right)^3$$

$$=4096\times\frac{17}{16}\times\frac{17}{16}\times\frac{17}{16}$$

$$= Rs. 4913$$

1

1

Section 'D'

(4 marks each)

23. Principal = Rs.
$$1000$$

$$Rate = 8\%$$

Case I:
$$t = 1$$
 year

Simple Interest =
$$\frac{p \times r \times t}{100} = \frac{1000 \times 1 \times 8}{100}$$

$$= Rs. 80$$

Compound Interest =
$$p\left(1+\frac{r}{100}\right)^{r}-p$$

$$=1000\left(1+\frac{8}{100}\right)-1000$$

$$=1000 \left(\frac{108}{100}\right) - 1000$$

$$=1080-1000$$

$$= Rs. 80$$

Case II: t = 2 years

1

1

Simple Interest =
$$\frac{p \times r \times t}{100} = \frac{1000 \times 8 \times 2}{100}$$

Compound Interest =
$$p \left(1 + \frac{r}{100}\right)^t - p$$

$$=1000\left(1+\frac{8}{100}\right)^2-1000$$

$$=1000\left(\frac{100+8}{100}\right)^2-1000$$

$$=1000 \left(\frac{108 \times 108}{100 \times 100} \right) - 1000$$

$$=\frac{108\times108}{10}-1000$$

$$= Rs. 166.40$$

Case III:
$$t = 3$$
 years,

Simple interest =
$$\frac{p \times r \times t}{100} = \frac{1000 \times 8 \times 3}{100}$$

$$= Rs. 240$$

Compound interest =
$$p\left(1 + \frac{r}{100}\right)' - p$$

$$=1000\left(1+\frac{8}{100}\right)^3-1000$$

$$=1000 \left(\frac{108}{100}\right)^3 - 1000$$

$$=\frac{1000}{1000000}(1259712)-1000$$

$$= Rs. 259.71$$

The table is:

Time period	1 year	2 year	3 years
S.I.	80	160	240
C.I.	80	166.40	259.71

24. Quadrilateral is divided into triangle.

Here,
$$h_1 = 13 m$$
, $h_2 = 8 m$

and
$$AC = 24 \text{ m}$$

2

1

 $\frac{1}{2}$

 $\frac{1}{2}$

 $\frac{1}{2}$

 $1\frac{1}{2}$

Area of quadrilateral ABCD

= Area of
$$\triangle ADC$$
 + Area of $\triangle ABC$

$$= \frac{1}{2} \times b \times h_1 + \frac{1}{2} \times b \times h_2$$

$$=\frac{1}{2}\times24\times13+\frac{1}{2}\times24\times8$$

$$=12\times13+12\times8$$

$$= 156 + 96$$

$$= 252 m^2$$

The area of quadrilateral field =
$$252 m^2$$
.

25.

$$\frac{2x+20}{25}=4$$

$$2x + 20 = 25 \times 4$$

$$2x + 20 = 100$$

$$2x = 100 - 20$$

$$2x = 80$$

$$x = \frac{80}{2}$$

26.

Numbers	Associative			
	Addition	Subtraction	Multiplication	Division
Rational numbers	Yes	No	Yes	No
Integers	Yes	No	Yes	No
Whole numbers	Yes	No	Yes	No
Natural numbers	Yes	No	Yes	No

27.

Subject	Centre angle	Marks obtained
Hindi	70°	$\frac{70}{360} \times 540 = 105$
English	55°	$\frac{55}{360} \times 540 = 82.5$

2 ½

2

Mathematics	90°	$\frac{90}{360} \times 540 = 135$
Social Science	65°	$\frac{65}{360} \times 540 = 97.5$
Science	80°	$\frac{80}{360} \times 540 = 120$

- (a) In Hindi student score 105 marks.
- (b) Marks scored in Mathematics = 135
- & Marks scored in Hindi = 105

$$:: 135 - 105 = 30$$

:. 30 more marks were obtained by the students in Mathematics than in Hindi.

(c) Yes, Sum of marks obtained in Social Science & Mathematics = 97.5+135 = 232.5

Sum of marks obtained in Science & Hindi = 120 + 105 = 225

Hence, the sum of the marks obtained in Social Science & Mathematics is more than that in Science & Hindi.

28. Here,
$$P = 12000$$
, $R = 6\%$ p.a.

$$T=2$$
 years

S. I. =
$$\frac{P \times R \times T}{100}$$

$$=\frac{12000\times 6\times 2}{100} = \text{Rs. } 1440$$

Amount (A) =
$$P + S.I. = 12000 + 1440$$

Again in second case,

$$A = P \left(1 + \frac{R}{100} \right)^n$$

$$=12000\left(1+\frac{6}{100}\right)^2$$

$$=12000\left(\frac{53}{50}\right)^2$$

$$=12000\times\frac{53}{50}\times\frac{53}{50}$$

$$= Rs. 13483.20$$

I pay extra amount = $A_2 - A_1$

$$= Rs. 13483.20 - Rs. 13440$$

$$= Rs. 43.20$$

29.
$$55(x^4-5x^3-24x^2)\div 5x (x-8)$$

$$55(x^4-5x^3-24x^2)$$

$$= 55 [x^2(x^2-5x-24)]$$

1

$$= 55[x^{2}(x^{2} + 3x - 8x - 24)]$$

$$= 55[x^{2}(x + 3)(x - 8)]$$

$$= 5 \times 11x^{2}(x + 3)(x - 8)$$
Now, Dividing by $5x(x - 8)$

$$\frac{5 \times 11x^{2}(x + 3)(x - 8)}{5x(x - 8)} = 11x(x + 3)$$
30. (a) $4x \times 5y \times 7z$

$$= (4 \times 5 \times 7) \times (x \times y \times z)$$

$$= 140 \times yz$$
(b) $4x \times 5y$

$$= (4 \times 5) \times (x \times y)$$

$$= 20 \times y$$

$$20xy \times 7z$$

$$= (20 \times 7) \times (xy \times z)$$

$$= 140 xyz$$
Now, $5y \times 7z$

$$= (5 \times 7) \times (y \times z)$$

$$= 35 yz$$
Secondly, $35y = x + 4x$

$$= (35 \times 4) \times (y \times x)$$

$$= 140 yz \times or 140 xyz$$
...(ii)
(c) Yes, the result is same.

(d) No, the order in which we carry out the multiplication does not matter.