CLASS24

Chapter: 12. CIRCLES

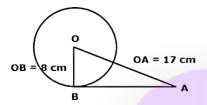
Exercise: 12A

Question: 1

Solution:

Let us consider a circle with center 0 and radius 8 cm.

The diagram is given as:



Consider a point A 17 cm away from the center such that OA = 17 cm

A tangent is drawn at point A on the circle from point B such that OB = radius = 8 cm

To Find: Length of tangent AB = ?

As seen OB \(\preceq\) AB

[Tangent at any point on the circle is perpendicular to the radius through point of contact]

∴ In right - angled ∆AOB, By Pythagoras Theorem

[i.e. $(hypotenuse)^2 = (perpendicular)^2 + (base)^2$]

$$(OA)^2 = (OB)^2 + (AB)^2$$

$$(17)^2 = (8)^2 + (AB)^2$$

$$289 = 64 + (AB)^2$$

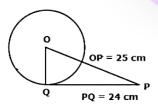
$$(AB)^2 = 225$$

$$AB = 15 cm$$

... The length of the tangent is 15 cm.

Question: 2

Solution:



Let us consider a circle with center O.

Consider a point P 25 cm away from the center such that OP = 25 cm

A tangent PQ is drawn at point Q on the circle from point P such that PQ = 24 cm

To Find: Length of radius OQ = ?

Now, OQ \perp PQ

∴ In right - angled △POQ,

By Pythagoras Theorem,

[i.e. $(hypotenuse)^2 = (perpendicular)^2 + (base)^2$]

$$(OP)^2 = (OQ)^2 + (PQ)^2$$

$$(25)^2 = (OQ)^2 + (24)^2$$

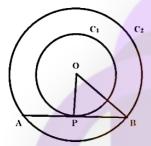
$$625 = (OQ)^2 + 576$$

$$(OQ)^2 = 49$$

$$OQ = 7 \text{ cm}$$

Question: 3

Solution:



Given: Two concentric circles (say C_1 and C_2) with common center as O and radius r_1 = 6.5 cm and r_2 = 2.5 cm respectively.

To Find: Length of the chord of the larger circle which touches the circle C2. i.e. Length of AB.

As AB is tangent to circle C_2 and we know that "Tangent at any point on the circle is perpendicular to the radius through point of contact"

So, we have,

 $OP \perp AB$

... OPB is a right - angled triangle at P,

By Pythagoras Theorem in △OPB

[i.e. $(hypotenuse)^2 = (perpendicular)^2 + (base)^2$]

We have,

$$(OP)^2 + (PB)^2 = (OB)^2$$

$$r_2^2 + (PB)^2 = r_1^2$$

$$(2.5)^2 + (PB)^2 = (6.5)^2$$

$$6.25 + (PB)^2 = 42.25$$

$$(PB)^2 = 36$$

$$PB = 6 cm$$

Now,
$$AP = PB$$
,

[as perpendicular from center to chord bisects the chord and OP \perp AB]

AB = AP + PB = PB + PB

= 2PB = 2(6)

= 12 cm

Question: 4

Solution:

Let AD = x cm, BE = y cm and CF = z cm

As we know that,

Tangents from an external point to a circle are equal,

In given Figure we have

AD = AF = x [Tangents from point A]

BD = BE = y [Tangents from point B]

CF = CE = z [Tangents from point C]

Now, Given: AB = 12 cm

AD + BD = 12

x + y = 12

y = 12 - x....[1]

and BC = 8 cm

BE + EC = 8

y + z = 8

12 - x + z = 8 [From 1]

z = x - 4....[2]

and

AC = 10 cm

AF + CF = 10

x + z = 10 [From 2]

x + x - 4 = 10

2x = 14

x = 7 cm

Putting value of x in [1] and [2]

y = 12 - 7 = 5 cm

z = 7 - 4 = 3 cm

So, we have AD = 7 cm, BE = 5 cm and CF = 3 cm

Question: 5

Solution:

Given: PA and PB are tangents to a circle with center O

To show: A, O, B and P are concyclic i.e. they lie on a circle i.e. AOBP is a cyclic quadrilateral.

Proof:

 $OB \perp PB$ and $OA \perp AP$

[Tangent at any point on the circle is perpendicular to the radius through point c

CLASS24

$$\angle$$
OBP + \angle OAP = 90 + 90 = 180°

AOBP is a cyclic quadrilateral i.e. A, O, B and P are concyclic.

[As we know if the sum of opposite angles in a quadrilateral is 180° then quadrilateral is cyclic]

Hence Proved.

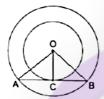
Question: 6

Solution:

Given: Two concentric circles with common center as O

To Prove: AC = CB

Construction: Join OC, OA and OB



Proof:

OC \perp AB

[Tangent at any point on the circle is perpendicular to the radius through point of contact]

In △OAC and △OCB, we have

OA = OB

[: radii of same circle]

OC = OC

[: common]

∠OCA = ∠OCB

[: Both 90° as OC \(\perp AB\)]

 $\triangle OAC \cong \triangle OCB$

[By Right Angle - Hypotenuse - Side]

AC = CB

[Corresponding parts of congruent triangles are congruent]

Hence Proved.

Question: 7

Solution:

Given : From an external point P, two tangents, PA and PB are drawn to a circle with center O. At a point E on the circle tangent is drawn which intersects PA and PB at C and D, respectively. And $PA=14\ cm$

To Find: Perimeter of △PCD

As we know that, Tangents drawn from an external point to a circle are equal.

CLASS24

So we have

AC = CE ...[1] [Tangents from point C]

ED = DB ...[2] [Tangents from point D]

Now Perimeter of Triangle PCD

= PC + CD + DP

= PC + CE + ED + DP

= PC + AC + DB + DP [From 1 and 2]

= PA + PB

Now,

PA = PB = 14 cm as tangents drawn from an external point to a circle are equal

So we have

Perimeter = PA + PB = 14 + 14 = 28 cm

Question: 8

Solution:

As we know that tangents drawn from an external point to a circle are equal ,

In the Given image we have,

AP = AR = 7 cm[1]

[tangents from point A]

CR = QC = 5 cm[2]

[tangents from point C]

 $BQ = PB \dots [3]$

[tangents from point B]

Now,

AB = 10 cm [Given]

AP + PB = 10 cm

7 + PB = 10 [From 1]

PB = 3 cm

BQ = 3 cm[4]

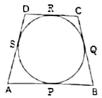
[From 3]

BC = BQ + QC = 5 + 3 = 8 cm [From 2 and 4]

Question: 9

Solution:

Let sides AB, BC, CD, and AD touches circle at P, Q, R and S respectively.



As we know that tangents drawn from an external point to a circle are equal,

In the given image we have,

AP = AS = w (say) [Tangents from point A]

BP = BQ = x (say) [Tangents from point B]

CP = CR = y (say) [Tangents from point C]

DR = DS = z (say) [Tangents from point D]

Now,

Given,

AB = 6 cm

AP + BP = 6

w + x = 6 ...[1]

BC = 7 cm

BP + CP = 7

x + y = 7[2]

CD = 4 cm

CR + DR = 4

y + z = 4[3]

Also.

$$AD = AS + DS = w + z[4]$$

Add [1] and [3] and substracting [2] from the sum we get,

$$w + x + y + z - (x + y) = 6 + 4 - 7$$

w + z = 3 cm; From [4]

AD = 3 cm

Question: 10

Solution:

As we know that tangents drawn from an external point to a circle are equal,

BR = BP [Tangents from point B] [1]

QC = CP [Tangents from point C] [2]

AR = AQ [Tangents from point A] [3]

As ABC is an isosceles triangle,

AB = BC [Given] [4]

Now substract [3] from [4]

AB - AR = BC - AQ

BR = QC

BP = CP [From 1 and 2]

... P bisects BC Hence Proved.

Question: 11

Solution:

In given Figure,

 $OA \perp AP$

[Tangent at any point on the circle is perpendicular to the radius through point of contact]

CLASS24

... In right - angled △OAP,

By Pythagoras Theorem

[i.e. $(hypotenuse)^2 = (perpendicular)^2 + (base)^2$]

 $(OP)^2 = (OA)^2 + (PA)^2$

Given, PA = 10 cm and OA = radius of outer circle = 6 cm

 $(OP)^2 = (6)^2 + (100)^2$

 $(OP)^2 = 36 + 100 = 136 [1]$

Also,

 $OB \perp BP$

[Tangent at any point on the circle is perpendicular to the radius through point of contact]

... In right - angled △OBP,

By Pythagoras Theorem

[i.e. $(hypotenuse)^2 = (perpendicular)^2 + (base)^2$]

 $(OP)^2 = (OB)^2 + (PB)^2$

Now, OB = radius of inner circle = 4 cm

And from [2]

 $(OP)^2 = 136$

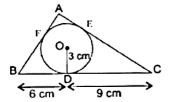
 $136 = (4)^2 + (PB)^2$

 $(PB)^2 = 136 - 16 = 120$

PB = 10.9 cm

Question: 12

Solution:



Given: \triangle ABC that is drawn to circumscribe a circle with radius r = 3 cm and Bl

CLASS24

Also, area ($\triangle ABC$) = 54 cm²

To Find: AB and AC

Now,

As we know tangents drawn from an external point to a circle are equal.

Then,

FB = BD = 6 cm [Tangents from same external point B]

DC = EC = 9 cm [Tangents from same external point C]

AF = EA = x (let) [Tangents from same external point A]

Using the above data, we get

$$AB = AF + FB = x + 6 cm$$

$$AC = AE + EC = x + 9 cm$$

$$BC = BD + DC = 6 + 9 = 15 \text{ cm}$$

Now we have heron's formula for area of triangles if its three sides a, b and c are given

$$ar = \sqrt{s(s-a)(s-b)(s-c)}$$

Where.

$$\Rightarrow S = \frac{a+b+c}{2}$$

So for AABC

$$a = AB = x + 6$$

$$b = AC = x + 9$$

$$c = BC = 15 \text{ cm}$$

$$\Rightarrow s = \frac{x+6+x+9+15}{2} = x + 15$$

And

$$ar(\triangle ABC) =$$

$$\sqrt{(x+15)(x+15-(x+6))(x+15-(x+9))(x+15-15)}$$

$$\Rightarrow 54 = \sqrt{(x + 15)(9)(6)(x)}$$

Squaring both sides, we get,

$$54(54) = 54x(x + 15)$$

$$x^2 + 15x - 54 = 0$$

$$x^2 + 18x - 3x - 54 = 0$$

$$x(x + 18) - 3(x + 18) = 0$$

$$(x-3)(x+18)=0$$

$$x = 3 \text{ or } - 18$$

but x = -18 is not possible as length can't be negative.

So

$$AB = x + 6 = 3 + 6 = 9 \text{ cm}$$

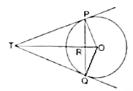
Question: 13

Solution:

Given : A circle with center O and radius 3 cm and PQ is a chord of length 4.8 cm. The tangents at P and Q intersect at point T

To Find : Length of TP

Construction: Join OQ



Now in △OPT and △OQT

OP = OQ [radii of same circle]

$$PT = PQ$$

[tangents drawn from an external point to a circle are equal]

$$OT = OT [Common]$$

$$\triangle OPT \cong \triangle OQT$$
 [By Side - Side - Side Criterion]

$$\angle POT = \angle OQT$$

[Corresponding parts of congruent triangles are congruent]

or
$$\angle POR = \angle OQR$$

Now in △OPR and △OQR

OP = OQ [radii of same circle]

OR = OR [Common]

∠POR = ∠OQR [Proved Above]

 $\triangle OPR \cong \triangle OQT$ [By Side - Angle - Side Criterion]

∠ORP = ∠ORQ

[Corresponding parts of congruent triangles are congruent]

Now,

$$\Rightarrow$$
 OR \perp PQ

$$\Rightarrow$$
 RT \perp PQ

As OR \perp PQ and Perpendicular from center to a chord bisects the chord we have

$$PR = QR = \frac{PQ}{2} = \frac{4.8}{2} = 2.4 \text{ cm}$$

∴ In right - angled △OPR,

By Pythagoras Theorem

[i.e. $(hypotenuse)^2 = (perpendicular)^2 + (base)^2$]

 $(OP)^2 = (OR)^2 + (PR)^2$

CLASS24

 $(3)^2 = (OR)^2 + (2.4)^2$

 $9 = (OR)^2 + 5.76$

 $(OR)^2 = 3.24$

OR = 1.8 cm

Now,

In right angled △TPR,

By Pythagoras Theorem

$$(PT)^2 = (PR)^2 + (TR)^2 ...[1]$$

Also, OP \perp OT

[Tangent at any point on the circle is perpendicular to the radius through point of contact]

In right angled \triangle OPT, By Pythagoras Theorem

$$(PT)^2 + (OP)^2 = (OT)^2$$

$$(PR)^2 + (TR)^2 + (OP)^2 = (TR + OR)^2 \dots [From 1]$$

$$(2.4)^2 + (TR)^2 + (3)^2 = (TR + 1.8)^2$$

$$4.76 + (TR)^2 + 9 = (TR)^2 + 2(1.8)TR + (1.8)^2$$

$$13.76 = 3.6TR + 3.24$$

$$3.6TR = 10.52$$

TR = 2.9 cm [Appx]

Using this in [1]

$$PT^2 = (2.4)^2 + (2.9)^2$$

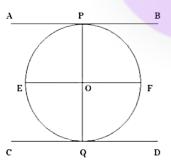
$$PT^2 = 4.76 + 8.41$$

$$PT^2 = 13.17$$

PT = 3.63 cm [Appx]

Question: 14

Solution:



Given: A circle with center O and AB and CD are two parallel tangents at points P and Q on the circle.

To Prove: PQ passes through O

Construction: Draw a line EF parallel to AB and CD and passing through O

Proof:

∠OPB = 90°

CLASS24

[Tangent at any point on the circle is perpendicular to the radius through point ϵ

Now, AB || EF

Also,

[Tangent at any point on the circle is perpendicular to the radius through point of contact]

Now, CD || EF

$$\angle$$
OQD + \angle QOF = 180°

$$90^{\circ} + \angle QOF = 180^{\circ}$$

$$\angle QOF = 90^{\circ} [2]$$

Now From [1] and [2]

$$\angle POF + \angle QOF = 90 + 90 = 180^{\circ}$$

So, By converse of linear pair POQ is a straight Line

i.e. O lies on PQ

Hence Proved.

Question: 15

Solution:

In quadrilateral POQB

[Tangent at any point on the circle is perpendicular to the radius through point of contact]

[Tangent at any point on the circle is perpendicular to the radius through point of contact]

$$\angle PQB = 90^{\circ} [Given]$$

By angle sum property of quadrilateral PQOB

$$\angle OPB + \angle OQB + \angle PBQ + \angle POQ = 360^{\circ}$$

$$90^{\circ} + 90^{\circ} + 90^{\circ} + \angle POQ = 360^{\circ}$$

$$\angle POQ = 90^{\circ}$$

As all angles of this quadrilaterals are 90° The quadrilateral is a rectangle

Also,
$$OP = OQ = r$$

i.e. adjacent sides are equal, and we know that a rectangle with adjacent sides equal is a square

... POQB is a square

And
$$OP = PB = BQ = OQ = r[1]$$

Now,

As we know that tangents drawn from an external point to a circle are equal

In given figure, We have

[Tangents from point D and DS = 5 cm is given]

AD = 23 cm [Given]

AR + DR = 23

AR + 5 = 23

AR = 18 cm

Now,

AR = AQ = 18 cm

[Tangents from point A]

AB = 29 cm [Given]

AQ + QB = 29

18 + QB = 29

QB = 11 cm

From [1]

QB = r = 11 cm

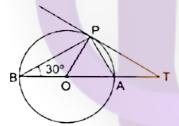
Hence Radius of circle is 11 cm.

Question: 16

Solution:

In Given Figure, we have a circle with center O let the radius of circle be r.

Construction: Join OP



Now, In △APB

∠ABP = 30°

∠APB = 90°

[Angle in a semicircle is a right angle]

By angle sum Property of triangle,

 \angle ABP + \angle APB + \angle PAB = 180

 $30^{\circ} + 90^{\circ} + \angle PAB = 180$

∠PAB = 60°

OP = OA = r [radii]

 $\angle PAB = \angle OPA = 60^{\circ}$

[Angles opposite to equal sides are equal]

By angle sum Property of triangle

 $\angle OPA + \angle OAP + \angle AOP = 180^{\circ}$

 $60^{\circ} + \angle PAB + \angle AOP = 180$

 $60 + 60 + \angle AOP = 180$

∠AOP = 60°

As all angles of \triangle OPA equals to 60°, \triangle OPA is an equilateral triangle

So, we have, OP = OA = PA = r[1]

∠OPT = 90°

[Tangent at any point on the circle is perpendicular to the radius through point of contact]

CLASS24

 \angle OPA + \angle APT = 90

 $60 + \angle APT = 90$

∠APT = 30°

Also,

 \angle PAB + \angle PAT = 180° [Linear pair]

 $60^{\circ} + \angle PAT = 180^{\circ}$

∠PAT = 120°

In △APT

 $\angle APT + \angle PAT + \angle PTA = 180^{\circ}$

 $30^{\circ} + 120^{\circ} + \angle PTA = 180^{\circ}$

 $\angle PTA = 30^{\circ}$

So,

We have

 $\angle APT = \angle PTA = 30^{\circ}$

AT = PA

[Sides opposite to equal angles are equal]

AT = r [From 1] [2]

Now,

AB = OA + OB = r + r = 2r [3]

From [2] and [3]

AB : AT = 2r : r = 2 : 1

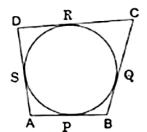
Hence Proved!

Exercise: 12B

Question: 1

Solution:

Let sides AB, BC, CD, and AD touches circle at P, Q, R and S respectively.



As we know that tangents drawn from an external point to a circle are equal,

In the given image we have,

AP = AS = w (say) [Tangents from point A]

BP = BQ = x(say) [Tangents from point B]

CP = CR = y (say) [Tangents from point C]

DR = DS = z (say) [Tangents from point D]

Now,

Given,

AB = 6 cm

AP + BP = 6

w + x = 6[1]

BC = 9 cm

BP + CP = 9

x + y = 9[2]

CD = 8 cm

CR + DR = 8

y + z = 8[3]

Also,

$$AD = AS + DS = w + z [4]$$

Add [1] and [3] and substracting [2] from the sum we get,

$$w + x + y + z - (x + y) = 6 + 8 - 9$$

w + z = 5 cm

From [4]

AD = 5 cm

Question: 2

Solution:

In the given figure, PA and PB are two tangents from common point P

[Tangents drawn from an external point are equal]

 $\angle PBA = \angle PAB$

[Angles opposite to equal angles are equal] [1]

By angle sum property of triangle in $\triangle APB$

 $\angle APB + \angle PBA + \angle PAB = 180^{\circ}$

 $50^{\circ} + \angle PAB + \angle PAB = 180^{\circ} [From 1]$

2∠PAB = 130°

 $\angle PAB = 65^{\circ} [2]$

Now,

∠OAP = 90°

[Tangents drawn at a point on circle is perpendicular to the radius through point of contact]

CLASS24

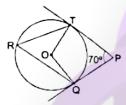
$$\angle$$
OAB + \angle PAB = 90°

$$\angle OAB + 65^{\circ} = 90^{\circ} [From 2]$$

∠OAB = 25°

Question: 3

Solution:



Given: In the figure, PT and PQ are two tangents and ∠TPQ = 70°

To Find: ∠TRQ

Construction: Join OT and OQ

In quadrilateral OTPQ

∠OTP = 90°

[Tangents drawn at a point on circle is perpendicular to the radius through point of contact]

∠OQP = 90°

[Tangents drawn at a point on circle is perpendicular to the radius through point of contact]

$$\angle TPQ = 70^{\circ} [Common]$$

By Angle sum of Quadrilaterals,

In quadrilateral OTPQ we have

$$\angle$$
OTP + \angle OQP + \angle TPQ + \angle TOQ = 360°

$$90^{\circ} + 90^{\circ} + 70^{\circ} + \angle TOQ = 360^{\circ}$$

$$250^{\circ} + \angle TOQ = 360$$

Now,

As we Know the angle subtended by an arc at the center is double the angle subtended by it at

point on the remaining part of the circle.

∴ we have

$$\angle TOQ = 2 \angle TRQ$$

 $110^{\circ} = 2 \angle TRQ$

CLASS24

Question: 4

Solution:

Given: AB and CD are two tangents to two circles which intersects at ${\bf E}\,.$

To Prove: AB = CD

Proof:

As

AE = CE ...[1]

[Tangents drawn from an external point to a circle are equal]

And

EB = ED ...[2]

[Tangents drawn from an external point to a circle are equal]

Adding [1] and [2]

$$AE + EB = CE + ED$$

AB = CD

Hence Proved.

Question: 5

Solution:

Given: PT is a tangent to a circle with center O and PQ is a chord of the circle such that ∠QPT = 70°

To Find: $\angle POQ = ?$

Now,

∠OPT = 90°

[Tangents drawn at a point on circle is perpendicular to the radius through point of contact]

$$\angle OPQ + \angle QPT = 90^{\circ}$$

$$\angle OPQ + 70^{\circ} = 90^{\circ}$$

Also,

OP = OQ [Radii of same circle]

$$\angle OQP = \angle OPQ = 20^{\circ}$$

[Angles opposite to equal sides are equal]

In \triangle OPQ By Angle sum property of triangles,

$$\angle$$
OPQ + \angle OQP + \angle POQ = 180°

$$20^{\circ} + 20^{\circ} + \angle POQ = 180^{\circ}$$

∠POQ = 140°

Question: 6

Solution:

Given: \triangle ABC that is drawn to circumscribe a circle with radius r = 2 cm and BE CLASS24

Also, area ($\triangle ABC$) = 21 cm²

To Find: AB and AC

Now,

As we know tangents drawn from an external point to a circle are equal.

Then,

FB = BD = 4 cm [Tangents from same external point B]

DC = EC = 3 cm [Tangents from same external point C]

AF = EA = x (let) [Tangents from same external point A]

Using the above data, we get

$$AB = AF + FB = x + 4 cm$$

$$AC = AE + EC = x + 3 cm$$

$$BC = BD + DC = 4 + 3 = 7 \text{ cm}$$

Now we have heron's formula for area of triangles if its three sides a, b and c are given

area =
$$\sqrt{s(s-a)(s-b)(s-c)}$$

Where,
$$s = \frac{a+b+c}{2}$$

So, for △ABC

$$a = AB = x + 4$$

$$b = AC = x + 3$$

$$c = BC = 7 \text{ cm}$$

$$\Rightarrow s = \frac{x+4+x+3+7}{2} = x + 7$$

And

$$ar(\triangle ABC) = \sqrt{(x+7)(x+7-(x+4))(x+7-(x+3))(x+7-7)}$$

$$\Rightarrow 21 = \sqrt{(x + 7)(3)(4)(x)}$$

Squaring both sides,

$$21(21) = 12x(x+7)$$

$$12x^2 + 84x - 441 = 0$$

$$4x^2 + 28x - 147 = 0$$

As we know roots of a quadratic equation in the form $ax^2 + bx + c = 0$ are,

$$\Rightarrow X = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

So roots of this equation are,

$$X = \frac{-28 \pm \sqrt{(28)^2 - 4(4)(-147)}}{2(4)}$$

$$\Rightarrow x = \frac{-28 \pm \sqrt{3136}}{8}$$

but x = -10.5 is not possible as length can't be negative.

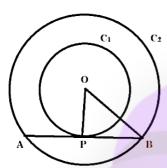
So

$$AB = x + 4 = 3.5 + 4 = 7.5 \text{ cm}$$

$$AC = x + 3 = 3.5 + 3 = 6.5 \text{ cm}$$

Question: 7

Solution:



Given: Two concentric circles (say C_1 and C_2) with common center as O and radius $r_1 = 5$ cm and $r_2 = 3$ cm respectively.

To Find: Length of the chord of the larger circle which touches the circle C2. i.e. Length of AB.

As AB is tangent to circle C2 and,

We know that "Tangent at any point on the circle is perpendicular to the radius through point of contact"

So, we have,

$$OP \perp AB$$

... OPB is a right - angled triangle at P,

By Pythagoras Theorem in △OPB

[i.e. (hypotenuse) 2 = (perpendicular) 2 + (base) 2]

We have,

$$(OP)^2 + (PB)^2 = (OB)^2$$

$$r_2^2 + (PB)^2 = r_1^2$$

$$(3)^2 + (PB)^2 = (5)^2$$

$$9 + (PB)^2 = 25$$

$$(PB)^2 = 16$$

$$PB = 4 cm$$

Now, AP = PB,

[as perpendicular from center to chord bisects the chord and OP \perp AB]

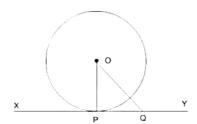
So,

$$AB = AP + PB = PB + PB$$

$$= 2PB = 2(4) = 8 cm$$

Question: 8

Solution:



Let us consider a circle with center O and XY be a tangent

To prove : Perpendicular at the point of contact of the tangent to a circle passes through the center i.e. the radius OP \perp XY

Proof:

Take a point Q on XY other than P and join OQ.

The point Q must lie outside the circle. (because if Q lies inside the circle, XY will become a secant and not a tangent to the circle).

.. OQ is longer than the radius OP of the circle. That is,

OQ > OP.

Since this happens for every point on the line XY except the point P, OP is the

shortest of all the distances of the point 0 to the points of XY.

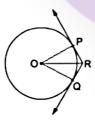
So OP is perpendicular to XY.

[As Out of all the line segments, drawn from a point to points of a line not passing through the point, the smallest is the perpendicular to the line.]

Question: 9

Solution:

Given: In the figure,



Two tangents RQ and RP are drawn from an external point R to the circle with center O and $\angle PRQ = 120^{\circ}$

To Prove: OR = PR + RQ

Construction: Join OP and OQ

Proof:

In △△OPR and △OQR

OP = OQ [radii of same circle]

OR = OR [Common]

 $PR = PQ \dots [1]$

 $\triangle OPR \cong \triangle OQR$

[By Side - Side - Side Criterion]

 \angle ORP = \angle ORQ

[Corresponding parts of congruent triangles are congruent]

Also,

 \angle PRQ = 120°

∠ORP + ∠ORQ = 120°

∠ORP + ∠ORP = 120°

2∠ORP = 120°

∠ORP = 60°

Also, OP \perp PR

[Tangents drawn at a point on circle is perpendicular to the radius through point of contact]

So, In right angled triangle OPR,

$$\cos \angle ORP = \frac{Base}{Hypotenuse} = \frac{PR}{OR}$$

$$\cos 60^{\circ} = \frac{PR}{OR} = \frac{1}{2}$$

 \therefore OR = 2PR

OR = PR + PR

OR = PR + RQ [From 1]

Hence Proved.

Question: 10

Solution:

Let AD = x cm, BE = y cm and CF = z cm

As we know that,

Tangents from an external point to a circle are equal,

In given Figure we have

$$AD = AF = x$$

[Tangents from point A]

$$BD = BE = y$$

[Tangents from point B]6CF = CE = z [Tangents from point C]

Now, Given: AB = 14 cm

$$AD + BD = 14$$

$$x + y = 14$$

$$y = 14 - x ... [1]$$

$$BE + EC = 8$$

$$y + z = 8$$

 $14 - x + z = 8 \dots [From 1]$

z = x - 6[2]

and

CA = 12 cm

AF + CF = 12

x + z = 12 [From 2]

x + x - 6 = 12

2x = 18

x = 9 cm

Putting value of x in [1] and [2]

y = 14 - 9 = 5 cm

z = 9 - 6 = 3 cm

So, we have AD = 9 cm, BE = 5 cm and CF = 3 cm

Question: 11

Solution:

Given: PA and PB are tangents to a circle with center 0

To show: AOBP is a cyclic quadrilateral.

Proof:

OB ⊥ PB and OA ⊥ AP

[Tangent at any point on the circle is perpendicular to the radius through point of contact]

 \angle OBP = \angle OAP = 90°

 \angle OBP + \angle OAP = 90 + 90 = 180°

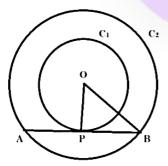
AOBP is a cyclic quadrilateral

[As we know if the sum of opposite angles in a quadrilateral is 180° then quadrilateral is cyclic]

Hence Proved.

Question: 12

Solution:



Let us consider circles C_1 and C_2 with common center as O. Let AB be a tangent to circle C_1 at point P and chord in circle C_2 . Join OB

In AOPB

CLASS24

[Tangents drawn at a point on circle is perpendicular to the radius through poin

... OPB is a right - angled triangle at P,

By Pythagoras Theorem,

[i.e. $(Hypotenuse)^2 = (Base)^2 + (Perpendicular)^2$]

$$(OB)^2 = (OP)^2 + (PB)^2$$

Now, 2PB = AB

[As we have proved above that OP \perp AB and Perpendicular drawn from center to a chord bisects the chord]

2PB = 8 cm

PB = 4 cm

$$(OB)^2 = (5)^2 + (4)^2$$

[As OP = 5 cm, radius of inner circle]

$$(OB)^2 = 41$$

$$\Rightarrow$$
 OB = $\sqrt{41}$ cm

Question: 13

Solution:

Given:, PQ is a chord of a circle with center 0 and PT is a tangent and ∠QPT = 60°.

To Find : ∠PRQ

$$\angle OPT = 90^{\circ}$$

$$\angle OPQ + \angle QPT = 90^{\circ}$$

$$\angle OPQ + 60^{\circ} = 90^{\circ}$$

Also.

OP = OQ [radii of same circle]

 $\angle OQP = \angle OPQ$ [Angles opposite to equal sides are equal]

From [1], $\angle OQP = \angle OQP = 30^{\circ}$

In △OPQ, By angle sum property

$$\angle OQP + \angle OPQ + \angle POQ = 180^{\circ}$$

$$30^{\circ} + 30^{\circ} + \angle POQ = 180^{\circ}$$

As we know, the angle subtended by an arc at the center is double the angle subtended by it at any point on the remaining part of the circle.

So, we have

$$2\angle PRQ = reflex \angle POQ$$

∠PRQ = 120°

Question: 14

In the given figure, PA and PB are two tangents from common point P

[: Tangents drawn from an external point are equal]

$$\angle PBA = \angle PAB$$

[: Angles opposite to equal angles are equal] ...[1]

By angle sum property of triangle in $\triangle APB$

$$\angle$$
APB + \angle PBA + \angle PAB = 180°

$$60^{\circ} + \angle PAB + \angle PAB = 180^{\circ} [From 1]$$

$$\angle PAB = 60^{\circ} ...[2]$$

Now,

 \angle OAP = 90° [Tangents drawn at a point on circle is perpendicular to the radius through point of contact]

$$\angle OAB + 60^{\circ} = 90^{\circ} [From 2]$$