Chapter: 17. PERIMETER AND AREA OF PLANE FIGURES

Exercise: 17A

Question: 1

Solution:

Given: Base = 24 cm

Height = 14.5 cm

We know that,

Area of a triangle = $1/2 \times \text{Base} \times \text{Height}$

$$= 1/2 \times 24 \text{ cm} \times 14.5 \text{ cm}$$

Question: 2

Solution:

Given: Side 1 = a (let) = 42 cm

Side
$$2 = b$$
 (let) = 34 cm

Side
$$3 = c$$
 (let) = 20 cm

We know that,

Area of a scalene triangle = $\sqrt{(s(s-a)(s-b)(s-c))}$

Where,
$$s = \frac{a+b+c}{2}$$

$$s = \frac{42 + 34 + 20}{2} cm$$

$$\Rightarrow$$
 s = $\frac{96}{2}$ cm

Now,

Area of a scalene triangle = $\sqrt{(48 \text{cm} \times (48-42) \text{cm} \times (48-34) \text{cm} \times (48-20) \text{cm})}$

 $= \sqrt{(48\text{cm} \times 6\text{cm} \times 14\text{cm} \times 28\text{cm})}$

 $=\sqrt{112896}$ cm²

 $= 336 \text{ cm}^2$

Clearly,

Length of longest side = 42 cm

Now,

We know that,

Area of a triangle = $1/2 \times \text{Base} \times \text{Height}$

$$\Rightarrow$$
 336 cm² = 1/2 × 42 cm × Height

$$\Rightarrow$$
 336 cm² = 21 cm × Height

$$\Rightarrow$$
 Height = $\frac{336 \text{ cm}^2}{21 \text{ cm}}$

⇒ Height = 16 cm

Question: 3

Solution:

Given: Side 1 = a (let) = 18 cm

Side
$$2 = b$$
 (let) = 24 cm

Side
$$3 = c$$
 (let) = 30 cm

We know that,

Area of a scalene triangle = $\sqrt{(s(s-a)(s-b)(s-c))}$

Where,
$$S = \frac{a+b+c}{2}$$

$$s = \frac{18 + 24 + 30}{2} \text{cm}$$

$$\Rightarrow s = \frac{72}{2} \text{cm}$$

$$\Rightarrow$$
 s = 36 cm

Now,

Area of a scalene triangle = $\sqrt{(36\text{cm} \times (36\text{-}18)\text{cm} \times (36\text{-}24)\text{cm} \times (36\text{-}30)\text{cm})}$

$$= \sqrt{(36\text{cm} \times 18\text{cm} \times 12\text{cm} \times 6\text{cm})}$$

Clearly,

Length of smallest side = 18 cm

Now,

We know that,

Area of a triangle = $1/2 \times \text{Base} \times \text{Height}$

$$\Rightarrow$$
 216 cm²= 1/2 × 18 cm × Height

$$\Rightarrow$$
 Height = $\frac{216 \text{ cm}^2}{9 \text{ cm}}$

Question: 4

Solution:

Given: Ratio of Sides = 5:12:13

Perimeter = 150 cm

Let the sides be,

$$a = 5x cm$$

$$b = 12x cm$$

$$c = 13x cm$$

We know that,

Perimeter of a triangle = a + b + c

$$\Rightarrow$$
 150 cm = 5x cm + 12x cm + 13x cm

$$\Rightarrow$$
 150 cm = 30x cm

$$\Rightarrow x = \frac{150 \text{ cm}}{30 \text{ cm}}$$

$$\Rightarrow x = 5$$

Therefore,

$$a = 5x cm = 5 \times 5 cm = 25 cm$$

$$b = 12x cm = 12 \times 5 cm = 60 cm$$

$$c = 13x cm = 13 \times 5 cm = 65 cm$$

Now,

Area of a scalene triangle = $\sqrt{(s(s-a)(s-b)(s-c))}$

Where,
$$s = \frac{a+b+c}{2}$$

$$s = \frac{25 + 60 + 65}{2} cm$$

$$\Rightarrow s = \frac{150}{2} cm$$

$$\Rightarrow$$
 s = 75cm

Now,

Area of a scalene triangle = $\sqrt{(75 \text{cm} \times (75-25) \text{cm} \times (75-60) \text{cm} \times (75-65) \text{cm})}$

$$= \sqrt{(75 \text{cm} \times 50 \text{cm} \times 15 \text{cm} \times 10 \text{cm})}$$

$$=\sqrt{562500}$$
 cm²

$$= 750 \text{ cm}^2$$

Question: 5

Solution:

Given: Ratio of Sides = 25 : 17 : 12

Perimeter = 540 m

Let the sides be,

$$a = 25x m$$

$$b = 17x m$$

$$c = 12x m$$

We know that,

Perimeter of a triangle = a + b + c

$$\Rightarrow$$
 540 m = 25x m + 17x m + 12x m

$$\Rightarrow$$
 540 m = 54x m

$$\Rightarrow x = \frac{540 \text{ m}}{54 \text{ m}}$$

$$\Rightarrow x = 10$$

Therefore,

$$a = 25x m = 25 \times 10 m = 250 m$$

$$b = 17x m = 17 \times 10 m = 170 m$$

$$c = 12x m = 12 \times 10 m = 120 m$$

We know that,

Area of a scalene triangle = $\sqrt{(s(s-a)(s-b)(s-c))}$

Where,
$$s = \frac{a+b+c}{2}$$

$$s \; = \; \frac{250 \; + \; 170 \; + \; 120}{2} \, \mathrm{m}$$

$$\Rightarrow \ s \, = \, \frac{540}{2} \, m$$

$$\Rightarrow$$
 s = 270 m

Now,

Area of a scalene triangle =

$$\sqrt{(270 \text{m} \times (270\text{-}250) \text{m} \times (270\text{-}170) \text{m} \times (270\text{-}120) \text{m})} = \sqrt{(270 \text{m} \times 20 \text{m} \times 10 \text{m} \times 150 \text{cm})}$$

$$=\sqrt{81000000}$$
 m²

$$= 9000 \text{ m}^2$$

Now,

The cost of ploughing $100 \text{ m}^2 = \text{Rs } 40$

Therefore, The cost of ploughing 1 m² = Rs $\frac{40}{100}$

Therefore, The cost of ploughing 9000 m² = Rs $\frac{40}{100}$ × 9000

= Rs 3600

Question: 6

Solution:

Given: Perimeter = 40 cm

Hypotenuse = 17 cm

The diagram is given as:

Let the sides be a, b and c(hypotenuse).

Therefore, a + b + c = 40 cm

$$\Rightarrow$$
 a + b + 17 = 40 cm

$$\Rightarrow$$
 a + b = 40 - 17 cm

$$\Rightarrow$$
 a + b = 23 cm

$$\Rightarrow$$
 a = (23-b) cm

Now we know that,

$$\Rightarrow$$
 a² + b² = c²

$$\Rightarrow$$
 (23-b)² + b² = 17²

$$\Rightarrow$$
 23² + b²-46b + b² = 289

$$\Rightarrow$$
 529 + b²-46b + b² = 289

$$\Rightarrow$$
 2b²-46b + 240 = 0

$$\Rightarrow$$
 b²-23b + 120 = 0

$$\Rightarrow$$
 b²-8b-15b + 120 = 0

$$\Rightarrow$$
 b(b-8)-15(b-8) = 0

$$\Rightarrow$$
 (b-8)(b-15) = 0

This gives us two equations,

i.
$$b-8 = 0$$

$$\Rightarrow$$
 b = 8

ii.
$$b-15 = 0$$

Let b = 8 cm

$$\Rightarrow$$
 a = (23-b) cm

$$\Rightarrow$$
 a = (23-8) cm

Now,

Area of triangle = $1/2 \times base \times height$

$$= 1/2 \times 8 \times 15$$

$$= 60 \text{ cm}^2$$

Question: 7

Solution:

Let the sides at right angles be a and b

And, the third side be c.

Given: a-b = 7 cm

Area of triangle = 60 cm²

Now, since a-b = 7

$$\Rightarrow$$
 a = b + 7

Area of triangle = $1/2 \times base \times height$

$$\Rightarrow$$
 60 = 1/2 × b × (b + 7)

$$\Rightarrow$$
 60 × 2 = b² + 7b

$$\Rightarrow$$
 b² + 7b = 120

$$\Rightarrow b^2 + 7b - 120 = 0$$

$$\Rightarrow$$
 b² + 15b - 8b - 120 = 0

$$\Rightarrow$$
 b(b + 15) - 8(b + 15) = 0

$$\Rightarrow (b + 15)(b-8) = 0$$

This gives us two equations,

i.
$$b - 8 = 0$$

$$\Rightarrow$$
 b = 8

ii.
$$b + 15 = 0$$

$$\Rightarrow$$
 b = -15

Since, the side of the triangle cannot be negative

Therefore, b = 8 cm

$$\Rightarrow$$
 a = (b + 7) cm

$$\Rightarrow$$
 a = (8 + 7) cm

$$\Rightarrow$$
 a = 15 cm

Now we know that,

 $Base^2 + Perpendicular^2 = Hypotenuse^2$

$$\Rightarrow$$
 a² + b² = c²

$$\Rightarrow 15^2 + 8^2 = c^2$$

$$\Rightarrow c^2 = 225 + 64$$

$$\Rightarrow$$
 c² = 289

$$\Rightarrow$$
 c = 17

Now,

Perimeter of triangle = a + b + c

$$\Rightarrow$$
 Perimeter of triangle = 15 + 8 + 17

Question: 8

Solution:

Let the sides at right angles be a and b

And, the third side be c.

Given:
$$a-b = 2$$
 cm

Area of triangle = 24 cm²

Now, since a-b=2

$$\Rightarrow$$
 a = b + 2

Now we know that,

Area of triangle = $1/2 \times base \times height$

$$\Rightarrow$$
 24 = 1/2 × b × (b + 2)

$$\Rightarrow$$
 24 × 2 = b² + 2b

$$\Rightarrow$$
 b² + 2b = 48

$$\Rightarrow b^z + 2b - 48 = 0$$

$$\Rightarrow$$
 b² + 8b-6b-48 = 0

$$\Rightarrow b(b + 8)-6(b + 8) = 0$$

$$\Rightarrow (b+8)(b-6) = 0$$

This gives us two equations,

i.
$$b + 8 = 0$$

$$\Rightarrow$$
 b = -8

ii.
$$b-6 = 0$$

$$\Rightarrow$$
 b = 6

Since, the side of the triangle cannot be negative

Therefore, b = 6 cm

$$\Rightarrow$$
 a = (b + 2) cm

$$\Rightarrow$$
 a = (6 + 2) cm

$$\Rightarrow$$
 a = 8 cm

Now we know that,

 $Base^2 + Perpendicular^2 = Hypotenuse^2$

$$\Rightarrow$$
 a² + b² = c²

$$\Rightarrow$$
 8² + 6² = c²

$$\Rightarrow c^2 = 64 + 36$$

$$\Rightarrow$$
 c² = 100

$$\Rightarrow c = 10$$

Now,

Perimeter of triangle = a + b + c

 \Rightarrow Perimeter of triangle = 8 + 6 + 10

Question: 9

Solution:

Given: Side of an equilateral triangle = 10 cm

(i) Area of equilateral triangle = $\frac{\sqrt{3}}{4} \times \text{side}^2$

$$=\frac{\sqrt{3}}{4}\times 10^2$$

$$=\frac{\sqrt{3}}{4}\times 100$$

$$=\,\frac{100\sqrt{3}}{4}$$

$$= 25\sqrt{3}$$

$$= 25 \times 1.732$$

$$= 43.3 \text{ cm}^2$$

(ii) Height of equilateral triangle = $\frac{\sqrt{3}}{3}$ × a

$$=\frac{\sqrt{3}}{2}\times 10$$

$$\,=\,\frac{10\sqrt{3}}{2}$$

$$= 5\sqrt{3}$$

$$= 5 \times 1.732$$

$$= 8.66 \text{ cm}^2$$

Question: 10

Solution:

Given: Height of an equilateral triangle = 6 cm

Let sides of equilateral triangle be a cm

We know that,

Height of equilateral triangle = $\frac{\sqrt{3}}{2} \times a$

$$\Rightarrow$$
 6 = $\frac{\sqrt{3}}{2}$ x a

$$\Rightarrow$$
 6 × 2 = $\sqrt{3}$ × a

$$\Rightarrow 12 = a\sqrt{3}$$

$$\Rightarrow a = \frac{12}{\sqrt{3}}$$

$$\Rightarrow a = \frac{12}{\sqrt{3}} \times \frac{\sqrt{3}}{\sqrt{3}}$$

$$\Rightarrow a = \frac{12\sqrt{3}}{3}$$

$$\Rightarrow$$
 a = 4 × 1.73

$$= 6.92 \text{ cm}^2$$

Now,

Area of equilateral triangle = $\frac{\sqrt{3}}{4} \times \text{side}^2$

$$=\frac{\sqrt{3}}{4}\times 6.92^2$$

$$=\frac{\sqrt{3}}{4}\times 47.88$$

$$= 11.98\sqrt{3} \text{ cm}^2$$

Question: 11

Solution:

Given: Area of an equilateral triangle = $36\sqrt{3}$ cm²

We know that,

$$\Rightarrow$$
 $36\sqrt{3} = \frac{\sqrt{3}}{4} \times side^2$

$$\Rightarrow$$
 side² = $36\sqrt{3} \times \frac{4}{\sqrt{3}}$

$$\Rightarrow$$
 side² = 36 × 4

Now,

Perimeter of equilateral triangle = $3 \times \text{side}$

Question: 12

Solution:

Given: Area of an equilateral triangle = $81\sqrt{3}$ cm²

We know that,

Area of equilateral triangle = $\frac{\sqrt{3}}{4} \times \text{side}^2$

$$\Rightarrow 81\sqrt{3} = \frac{\sqrt{3}}{4} \times \text{side}^2$$

$$\Rightarrow$$
 side² = $81\sqrt{3} \times \frac{4}{\sqrt{3}}$

$$\Rightarrow$$
 side² = 81 × 4

Now,

Height of equilateral triangle = $\frac{\sqrt{3}}{2}$ × side

$$=\frac{\sqrt{3}}{2} \times 18$$

$$= 9\sqrt{3}$$
 cm

Question: 13

Solution:

Given: Base = 48 cm

Hypotenuse = 50 cm

We know that,

 $Base^2 + Perpendicular^2 = Hypotenuse^2$

$$\Rightarrow$$
 48² + Perpendicular² = 50²

$$\Rightarrow$$
 Perpendicular² = $50^2 - 48^2$

Area of a triangle = $1/2 \times \text{Base} \times \text{Height}$

$$= 1/2 \times 48 \text{ cm} \times 14 \text{ cm}$$

$$= 336 \text{ cm}^2$$

Question: 14

Solution:

Given: Base = 60 cm

Hypotenuse = 65 cm

We know that,

 $Base^2 + Perpendicular^2 = Hypotenuse^2$

$$\Rightarrow$$
 60² + Perpendicular² = 65²

$$\Rightarrow$$
 Perpendicular² = 65² - 60²

$$\Rightarrow$$
 Perpendicular² = 625 cm²

Area of a triangle = $1/2 \times \text{Base} \times \text{Height}$

$$= 1/2 \times 60 \text{ cm} \times 25 \text{ cm}$$

Question: 15

Solution:

Given: Radius of circle = 8 cm

Altitude = 6 cm

Since, in a right-angled triangle the hypotenuse

is the diameter of circumcircle.

Therefore,

Hypotenuse = $2 \times Radius$

 $= 2 \times 8 \text{ cm}$

 $= 16 \, \mathrm{cm}$

Now, we consider the hypotenuse as base and the altitude to the hypotenuse as height

So,

Area of a triangle = $1/2 \times \text{Base} \times \text{Height}$

 $= 1/2 \times 16 \text{ cm} \times 6 \text{ cm}$

 $= 1/2 \times 96 \text{ cm}^2$

 $=48 \text{ cm}^2$

Question: 16

Solution:

Given: Area = 200 cm

Let the equal sides be a.

We know that,

Area of a triangle = $1/2 \times \text{Base} \times \text{Height}$

$$\Rightarrow$$
 200 = 1/2 × a × a

$$\Rightarrow$$
 200 = 1/2 × a^2

$$\Rightarrow a^2 = 200 \times 2$$

$$\Rightarrow a^2 = 400$$

$$\Rightarrow$$
 a = 20 cm

Now.

 $Base^2 + Perpendicular^2 = Hypotenuse^2$

CLASS24

$$\Rightarrow$$
 20² + 20² = Hypotenuse²

$$\Rightarrow$$
 Hypotenuse² = 400 + 400

Now,

Perimeter of triangle = 20 + 20 + 28.2 cm

= 68.2 cm

Question: 17

Solution:

Given: Area of isosceles triangle = 360 cm²

Base of triangle = 80 cm

Let a be the equal sides of the triangle

We know that,

Area of isosceles triangle = $1/4 \times b\sqrt{(4a^2 - b^2)}$

$$\Rightarrow$$
 360 = 1/4 × 80 $\sqrt{(4a^2 - 80^2)}$

$$\Rightarrow 360 = 1/4 \times 80\sqrt{(4a^2 - 6400)}$$

$$\Rightarrow$$
 360 = 20 $\sqrt{[4(a^2 - 1600)]}$

$$\Rightarrow 360 = 20 \times 2\sqrt{(a^2 - 1600)}$$

$$\Rightarrow \frac{360}{20 \times 2} = \sqrt{a^2 - 1600}$$

$$\Rightarrow 9 = \sqrt{(a^2 - 1600)}$$

On squaring both sides we get,

$$\Rightarrow$$
 81 = $a^2 - 1600$

⇒ a = 41 cm

Now.

Perimeter of triangle = 41 cm + 41 cm + 80 cm

= 162 cm

Question: 18

Solution:

Let height of triangle = h cm

Given: Base of the triangle (b) = 12 cm

Equal sides (a) = h + 2 cm

Now,

Area of a triangle = $1/2 \times \text{Base} \times \text{Height}$

And.

Area of isosceles triangle = $1/4 \times b\sqrt{(4a^2 - b^2)}$

$$\Rightarrow 1/2 \times \text{Base} \times \text{Height} = 1/4 \times \text{b}\sqrt{(4a^2 - b^2)}$$

$$\Rightarrow 1/2 \times 12 \times h = 1/4 \times 12\sqrt{[4(h+2)^2 - 12^2]}$$

$$\Rightarrow$$
 6h = $3\sqrt{(4h^2 + 16h + 16-144)}$

$$\Rightarrow$$
 2h = $\sqrt{(4h^2 + 16h-128)}$

On squaring both sides we get,

$$\Rightarrow 4h^2 = 4h^2 + 16h - 128$$

$$\Rightarrow$$
 16h = 128

$$\Rightarrow h = \frac{128}{16}$$

$$\Rightarrow$$
 h = 8 cm

Now,

Area of a triangle = $1/2 \times \text{Base} \times \text{Height}$

$$= 1/2 \times 12 \text{ cm} \times 8 \text{ cm}$$

$$= 1/2 \times 96 \text{ cm}^2$$

$$= 48 \text{ cm}^2$$

Question: 19

CLASS24

Solution:

Given: Equal sides (i.e., base and perpendicular) = 10 cm

We know that,

Area of a triangle = 1/2 × Base × Height

Area of a triangle = $1/2 \times 10$ cm $\times 10$ cm

Area of a triangle = 50 cm²

Now,

 $Base^2 + Perpendicular^2 = Hypotenuse^2$

$$\Rightarrow 10^2 + 10^2 = \text{Hypotenuse}^2$$

$$\Rightarrow$$
 Hypotenuse² = 100 + 100

Now,

Perimeter of triangle = 10 + 10 + 14.1 cm

= 24.1 cm

Question: 20

Solution:

Given:
$$AB = BC = AC = a (let) = 10 cm$$

$$BD = 8 cm$$

Now,

Area of an equilateral triangle ($\triangle ABC$) = $\frac{\sqrt{3}}{4} \times a^2$

$$=\frac{\sqrt{3}}{4}\times 10^2$$

$$= 25\sqrt{3} \text{ cm}^2$$

$$= 43.3 \text{ cm}^2$$

Now, in ΔDBC

 $Base^2 + Perpendicular^2 = Hypotenuse^2$

$$\Rightarrow$$
 DC² + DB² = BC²

$$\Rightarrow$$
 DC² = BC²-BD²

CLASS24

$$\Rightarrow$$
 DC² = 10²-8²

$$\Rightarrow$$
 DC² = 100-64

$$\Rightarrow$$
 DC² = 36 cm²

$$\Rightarrow$$
 DC = 6 cm

Now,

Area of a triangle (ΔDBC) = $1/2 \times Base \times Height$

$$= 1/2 \times DC \times BC$$

$$= 1/2 \times 6 \text{ cm} \times 8 \text{ cm}$$

$$= 1/2 \times 48 \text{ cm}^2$$

$$= 24 \text{ cm}^2$$

Now,

Area of shaded region = $\triangle ABC - \triangle DBC$

$$= 43.3 \text{ cm}^2 - 24 \text{ cm}^2$$

$$= 19.3 \text{ cm}^2$$

Exercise: 17B

Question: 1

Solution:

Given: Perimeter = 80 m

Breadth = 16 m

We know that,

Perimeter of a rectangle = 2(length + breadth)

$$\Rightarrow$$
 80 m = 2(length + 16 m)

$$\Rightarrow \frac{80}{2}$$
m = length + 16 m

$$\Rightarrow$$
 40m = length + 16 m

$$\Rightarrow$$
 Length = 40 m - 16 m

Now,

Area of rectangle = Length × Breadth

$$= 384 \text{ m}^2$$

Question: 2

Solution:

Given: Length of park (1) = $2 \times breadth(b) = 2b$

We know that,

Perimeter of a rectangle = 2(length + breadth)

$$\Rightarrow$$
 840 m = 2(2b + b)

$$\Rightarrow \frac{840}{2}m \ = \ 2b \ + \ b$$

$$\Rightarrow \ b \ = \ \frac{420}{3} m$$

Now,

$$l = 2b = 2 \times 140 \text{ m} = 280 \text{ m}$$

Hence,

Area of rectangle = Length \times Breadth

$$= 140 \text{ m} \times 280 \text{ m}$$

$$=39200 \, \text{m}^2$$

Question: 3

Solution:

Given: Breadth (b) = 12 cm

Diagonal = 37 cm

Let length be l cm

We know that,

 $Base^2 + Perpendicular^2 = Hypotenuse^2$

$$\Rightarrow l^2 + 12^2 = 37^2$$

$$\Rightarrow l^2 = 37^2 - 12^2$$

$$\Rightarrow l^2 = 1369 \text{ cm}^2 - 144 \text{ cm}^2$$

$$\Rightarrow$$
 l² = 1225 cm²

$$\Rightarrow$$
 l = 35 cm

Now,

 $=35 \text{ cm} \times 12 \text{ cm}$

 $= 420 \text{ cm}^2$

Question: 4

Solution:

Given: Area = 462 m²

Length = 28 m

We know that,

Area of rectangle = Length × Breadth

$$\Rightarrow$$
 462 m² = 28 m × Breadth

$$\Rightarrow$$
 Breadth = $\frac{462 \text{ m}^2}{28 \text{ m}}$

$$\Rightarrow$$
 Breadth = 16.5 m

Now,

Perimeter of a rectangle = 2(length + breadth)

$$= 2(28 m + 16.5 m)$$

$$= 2 \times 44.5 \text{ m}$$

= 89 m

Question: 5

Solution:

Given: Cost of fencing lawn = Rs 65 per metre.

Area of lawn = 3375 m^2

Length: Breadth = 5:3

Let,

Length = 5x

Breadth = 3x

We know that,

Area of lawn = Length × Breadth

$$\Rightarrow$$
 3375 m² = 5x × 3x

$$\Rightarrow x^2 = \frac{3375}{15} \text{m}^2$$

$$\Rightarrow$$
 x² = 225 m²

$$\Rightarrow$$
 x = 15 m

Therefore,

Length = $5x = 5 \times 15 = 75 \text{ m}$

Breadth = $3x = 3 \times 15 = 45 \text{ m}$

Now,

Perimeter of lawn = 2(length + breadth)

$$= 2(75 m + 45 m)$$

Hence,

Cost of Fencing = $240 \text{ m} \times \text{Rs } 65 \text{ per meter}$

= Rs 15600

Question: 6

Solution:

Given: Cost of covering = Rs 60 per metre.

Breadth of carpet = 75 cm = 0.75 m

Length of room = 16 m

Breadth of room = 13.5 m

We know that,

Area of room = Length × Breadth

$$= 16 \text{ m} \times 13.5 \text{ m}$$

$$= 216 \text{ m}^2$$

Now,

$$Length of carpet = \frac{Area of room}{Breadth of carpet}$$

$$=\frac{216 \text{ m}^2}{0.75 \text{ m}}$$

Now,

Cost of covering the floor = $288 \text{ m} \times \text{Rs } 60 \text{ per meter}$

Question: 7

Solution:

Given: Length of carpet = 2.5 m

Breadth of carpet = 80 cm = 0.8 m

Length of hall = 24 m

Breadth of hall = 18 m

We know that,

Area of hall = Length × Breadth

$$= 24 \text{ m} \times 18 \text{ m}$$

$$=432 \text{ m}^2$$

And,

Area of carpet = Length × Breadth

$$= 2.5 \text{ m} \times 0.8 \text{ m}$$

$$= 2 m^2$$

Now,

Number of carpets = $\frac{\text{Area of hall}}{\text{Area of carpet}}$

$$=\frac{432 \text{ m}^2}{2 \text{ m}^2}$$

= 216 carpets

Question: 8

Solution:

Given: Length of verandah = 36 m

Breadth of verandah = 15 m

Length of stones = 6 dm = 0.6 m

Breadth of stones = 5 dm = 0.5 m

We know that,

Area of verandah = Length × Breadth

$$= 540 \text{ m}^2$$

And,

Area of stones = Length × Breadth

$$= 0.6 \text{ m} \times 0.5 \text{ m}$$

$$= 0.3 \text{ m}^2$$

Now,

Number of stones = $\frac{\text{Area of verandah}}{\text{Area of stones}}$

$$=\,\frac{540\;m^2}{0.3\;m^2}$$

= 1800 stones

Question: 9

Solution:

Given: Area of rectangle = 192 cm²

Perimeter of rectangle = 56 cm

Let,

Length be I cm

And, breadth be b cm

Now,

Area of rectangle = Length × Breadth

$$\Rightarrow$$
 192 cm² = l cm × b cm

$$\Rightarrow 1 \text{ cm} = \frac{192 \text{ cm}^2}{\text{b cm}}$$

Perimeter of rectangle = 2(length + breadth)

$$\Rightarrow$$
 56 cm = 2(l cm + b cm)

Now, substituting the value of l in this we get,

$$56 = 2\left(\frac{192}{b} + b\right)$$

$$\Rightarrow 56 = 2\left(\frac{192 + b^2}{b}\right)$$

$$\Rightarrow \frac{56}{2} = \frac{192 + b^2}{b}$$

$$\Rightarrow 28 = \frac{192 + b^2}{b}$$

$$\Rightarrow$$
 b²- 28b + 192 = 0

$$\Rightarrow$$
 b²- 16 b - 12 b + 192 = 0

$$\Rightarrow$$
 b(b - 16) - 12(b - 16) = 0

$$\Rightarrow$$
 (b - 12) (b - 16) = 0

This gives us two equations,

i.
$$b - 12 = 0$$

$$\Rightarrow$$
 b = 12

ii.
$$b - 16 = 0$$

$$\Rightarrow$$
 b = 16

Let b = 12 cm

$$\Rightarrow 1 \, \text{cm} = \frac{192 \, \text{cm}^2}{12 \, \text{cm}} = 16 \, \text{cm}$$

Hence,

Length = 16 cm

Breadth = 12 cm

Question: 10

Solution:

Given:

Length of park = 35 m

Breadth of park = 18 m

Now,

Length to be covered = 35 - (2.5 + 2.5)

 $= 30 \, \text{m}$

Breadth to be covered = 18 - (2.5 + 2.5)

 $= 13 \, \text{m}$

Area of park = Length × Breadth

$$=30 \text{ m} \times 13 \text{ m}$$

$$=390 \text{ m}^2$$

Question: 11

Solution: Since gravel path is 3 m wide all around,

... Length of plot with path = 125 + (3 + 3)= 131 m

Breadth of plot with path = 78 + (3 + 3) = 84 m

Area of the rectangular plot without path = $L \times B \Rightarrow$ Area of the rectangular plot without path = $125 \times 78 = 9750$ m²Area of rectangular plot with path = $L \times B \Rightarrow$ Area of the rectangular plot with path = $131 \times 84 = 11004$ m²Area of the path = Area of the rectangular plot with path - Area of the rectangular plot without path = 11004 - 9750

= $1254 \text{ m}^2\text{Cost}$ of gravelling 1 m^2 path = Rs 75Cost of gravelling 1254 m^2 path = Rs 75×1254 = Rs 94050

Question: 12

Solution:

Given:

Length of field = 54 m

Breadth of field = 35 m

Let width of the path be x m

Area of field = Length × Breadth

= 54 m × 35 m

 $= 1890 \text{ m}^2$

Therefore,

Length of field without path = 54 - (x + x)

= 54 - 2x

Breadth of field without path = 35 - (x + x)

= 35 - 2x

Therefore,

Area of field without path = Length without path × Breadth without path

$$= (54 - 2x) \times (35 - 2x)$$

$$= 1890 - 70x - 108x + 4x^2$$

Now,

Area of path = Area of field - Area of field without path

$$\Rightarrow$$
 420 = 1890 - (1890 - 178x + 4x²)

$$\Rightarrow$$
 420 = 1890 - 1890 + 178x - 4x²

$$\Rightarrow 420 = 178x - 4x^2$$

$$\Rightarrow 4x^2 - 178x + 420 = 0$$

$$\Rightarrow 2x^2 - 89x + 210 = 0$$

$$\Rightarrow 2x^2 - 84x - 5x + 210 = 0$$

$$\Rightarrow 2x(x-42) - 5(x-42) = 0$$

$$\Rightarrow (x - 42)(2x - 5) = 0$$

This gives us two equations,

i.
$$x - 42 = 0$$

$$\Rightarrow$$
 x = 42

ii.
$$2x - 5 = 0$$

$$\Rightarrow x = \frac{5}{2}$$

Since, width of park cannot be more than breadth of field

Therefore, width of park = 42 m

Question: 13

Solution:

Given:

Length: Breadth 9:5

Width of the path = 3.5 m

Area of path = 1911 m^2

Let,

Length of field = 9x

Breadth of field = 5x

Area of field = Length × Breadth

$$=9x \times 5x$$

$$= 45 x^2$$

Therefore,

= 9x - 7

Breadth of field without path = 5x - (3.5 + 3.5)

= 5x - 7

Therefore,

Area of field without path = Length without path × Breadth without path

$$= (9x - 7) \times (5x - 7)$$

$$= 45x^2 - 35x - 63x + 49$$

$$=45x^2-98x+49$$

Now,

Area of path = Area of field - Area of field without path

$$\Rightarrow$$
 1911 = 45 x² - (45x² - 98x + 49)

$$\Rightarrow$$
 1911 = 45 x^2 - 45 x^2 + 98 x - 49

$$\Rightarrow$$
 1911 = 98x - 49

$$\Rightarrow 98x = 1911 + 49$$

$$\Rightarrow$$
 98x = 1960

$$\Rightarrow x = 20$$

Hence,

Length of field = $9x = 9 \times 20 = 180 \text{ m}$

Breadth of field = $5x = 5 \times 20 = 100 \text{ m}$

Question: 14

Solution:

Given:

Length = 4.9 m

Breadth = 3.5 m

Margin = 25 cm = 0.25 m

Breadth of carpet = 80 cm = 0.8 m

Cost = Rs 80 per meter

Now,

Length to be carpeted = 4.9 m - (0.25 + 0.25) m

= 4.4 m

Breadth to be carpeted = 3.5 m - (0.25 + 0.25) m

= 3 m

Area to be carpeted = Length to be carpeted × Breadth to be carpeted

$$= 4.4 \text{ m} \times 3 \text{ m}$$

$$= 13.2 \text{ m}^2$$

Area of carpet = Area to be carpeted = 13.2 m²

Now,

$$Length of carpet = \frac{Area of carpet}{Breadth of carpet}$$

$$Length of carpet \, = \, \frac{13.2 \; m^2}{0.8 \; m}$$

$$= 16.5 \text{ m}$$

Now.

Cost of 1 m carpet = Rs 80

Therefore,

Cost of 16.5 m carpet = Rs 80 × 16.5 m

= Rs 1,320

Question: 15

Solution:

Given:

Length = 8 m

Breadth = 5 m

Border = 12 m²

Let the width be x m

Area of floor = Length × Breadth

$$= 8 \text{ m} \times 5 \text{ m}$$

$$= 40 \text{ m}^2$$

Now,

Length without border = 8 m - (x + x) m

$$= (8 - 2x) m$$

Breadth without border = 5 m - (x + x) m

$$= (5 - 2x) m$$

Therefore,

Area without border = Length without border × Breadth without border

$$= (8-2x) \times (5-2x)$$

 $= 40 - 16x - 10x + 4x^2$

Area of border = Area of floor - Area without border

$$\Rightarrow$$
 12 = 40 - (40 - 16x - 10x + 4x²)

$$\Rightarrow$$
 12 = 40 - 40 + 16x + 10x - 4x²

$$\Rightarrow 12 = 26x - 4x^2$$

$$\Rightarrow 4x^2 - 26x + 12 = 0$$

$$\Rightarrow 4x^2 - 24x - 2x + 12 = 0$$

$$\Rightarrow 4x(x-6) - 2(x-6) = 0$$

$$\Rightarrow (x-6)(4x-2)=0$$

This gives us two equations,

i.
$$x - 6 = 0$$

$$\Rightarrow x = 6$$

ii.
$$4x - 2 = 0$$

$$\Rightarrow x = 1/2$$

Since,

Border cannot be greater than carpet

Hence, width of border is 1/2 m = 50 cm

Question: 16

Solution:

Length = 80 m

Breadth = 64 m

Width of road = 5 m

Area of horizontal road = $5 \text{ m} \times 80 \text{ m} = 400 \text{ m}^2$

Area of vertical road = $5 \text{ m} \times 64 \text{ m} = 320 \text{ m}^2$

Area of common part to both roads = $5 \text{ m} \times 5 \text{ m} = 25 \text{ m}^2$

Now,

Area of roads to be gravelled = Area of horizontal road + Area of vertical road - At CLASS24 part to both roads = 400 m² + 320 m² - 25 m² $=695 \text{ m}^2$ Cost of gravelling = $695 \text{ m}^2 \times \text{Rs } 40 \text{ per } \text{m}^2$ = Rs 27800Question: 17 Solution: Given: Length of walls = 14 m Breadth of walls = 10 m Height of walls = 6.5 m Length of windows = 1.5 mBreadth of windows = 1 m Length of doors = 2.5 mBreadth of doors = 1.2 m $Cost = Rs 35 per m^2$ Now, Area of four walls = 2(Length of walls × Height of walls) + 2(Breadth of walls × Height of walls) $= 2(14 \times 6.5) + 2(10 \times 6.5)$ $= 182 \text{ m}^2 + 130 \text{ m}^2$ $=312 \text{ m}^2$ Area of two doors = 2(Length of doors × Breadth of doors) $= 2(2.5 \times 1.2)$ $= 6 \text{ m}^2$ Area of four windows = 4(Length of windows × Breadth of windows) $=4(1.5 \times 1)$ $= 6 \text{ m}^2$ Therefore, Area to be painted = Area of 4 walls-(Area of 2 doors + Area of 4 windows) $= 312 \text{ m}^2 - (6 \text{ m}^2 + 6 \text{ m}^2)$

 $=300 \text{ m}^2$

= Rs 10500

Question: 18

Solution:

Given:

Cost of painting = $300 \text{ m}^2 \times \text{Rs } 35 \text{ per m}^2$

Cost per meter = Rs 30

Total cost = Rs 7560

Cost per meter for floor = Rs 25

Total cost for floor = Rs 2700

Let height be h

Now,

$$Area of the floor \, = \, \frac{Total \, cost}{Cost \, per \, meter}$$

$$=\frac{2700}{25}$$

$$= 108 \, \mathrm{m}^2$$

Breadth =
$$\frac{\text{Area of the floor}}{\text{Length}}$$

$$=\frac{108}{12}$$

Area of walls
$$=$$
 $\frac{\text{Total cost}}{\text{Cost per meter}}$

$$=\frac{7560}{30}$$

$$= 252 \,\mathrm{m}^2$$

Area of 4 walls = $2(Length of walls \times Height of walls) + 2(Breadth of walls \times Height of walls)$

$$\Rightarrow 252 = 2(12 \times h) + 2(9 \times h)$$

$$\Rightarrow$$
 252 = 24h + 18h

$$\Rightarrow$$
 252 = 42h

$$\Rightarrow$$
 h = 6 m

Therefore.

Dimensions = $12 \text{ m} \times 9 \text{ m} \times 6 \text{ m}$

Question: 19

Solution:

Given:

Diagonal = 24 m

Let the side of square be s

Area of square = 1/2 × Diagonal²

$$= 1/2 \times 24^2$$

 $= 288 \text{ m}^2$

Area of square = side2

$$\Rightarrow$$
 288 m² = s²

$$\Rightarrow$$
 s = $12\sqrt{2}$ m

$$\Rightarrow$$
 s = 16.92 m

Therefore,

Perimeter of square = 4×16.92

CLASS24

= 67.68 m

Question: 20

Solution:

Given:

 $Area = 128 cm^2$

Let the side of square be s

Area of square = $1/2 \times Diagonal^2$

$$\Rightarrow$$
 128 = 1/2 × Diagonal²

$$\Rightarrow$$
 Diagonal² = 2 × 128

Area of square = side2

$$\Rightarrow$$
 128 m² = s²

$$\Rightarrow$$
 s = $8\sqrt{2}$ cm

$$\Rightarrow$$
 s = 11.28 cm

Therefore,

Perimeter of square = 4×11.28

=45.12 cm

Question: 21

Solution:

Given:

Area = 8 hectares = 0.08 km²

Speed = 4 km per hr

Let the side of square be s

Area of square = $1/2 \times Diagonal^2$

$$\Rightarrow$$
 0.08 = 1/2 × Diagonal²

$$\Rightarrow$$
 Diagonal² = 2 × 0.08

$$Time taken = \frac{Distance}{Speed}$$

$$= \frac{0.04 \text{ km}}{4 \text{ km per hr}}$$

$$= 0.01 \, hr$$

$$= (0.01 \times 60)$$
 mins

Therefore,

Time taken = 6 mins

Question: 22

Solution:

Given:

Rate = Rs 900 per hectare

Total Cost = Rs 8100

Rate of fencing = Rs 18 per metre

Let the side of square field be s

Now,

$$Area \, = \, \frac{Total \, Cost}{Rate}$$

$$=\frac{8100}{900}$$

 $= 9 \text{ hectares} = 90000 \text{ m}^2$

 \Rightarrow 90000 m² = side²

 \Rightarrow side = 300 m²

Now,

Perimeter = $4 \times \text{side}$

 $= 4 \times 300 \text{ m}^2$

 $= 1200 m^2$

Therefore,

Cost of fencing = $1200 \text{ m}^2 \times \text{Rs } 18 \text{ per metre}$

= Rs 21600

Question: 23

Solution:

Given:

Rate = RS. 14 per metre

Total Cost = RS. 28000

Rate of mowing = RS. 54 per 100 m²

Let the side of square field be s

Now,

$$Perimeter = \frac{Total\ Cost}{Rate}$$

$$=\,\frac{28000}{14}$$

Perimeter = $4 \times \text{side}$

$$\Rightarrow$$
 2000 m = 4 × s

$$\Rightarrow s = \frac{2000}{4}$$

$$\Rightarrow$$
 s = 500 m

Now,

Area = side²

$$= (500 \text{ m})^2$$

Therefore,

Cost of mowing 1 $m^2 = Rs \frac{54}{100}$

Cost of mowing 250000 m² = Rs $\frac{54}{100}$ × 250000

= Rs 135000

Question: 24

Solution:

Given:

BD = 24 cm

AL = 9 cm

CM = 12 cm

In ΔADB,

Area of $\triangle ADB = 1/2 \times BD \times AL$

 $= 1/2 \times 24 \text{ cm} \times 9 \text{ cm}$

 $= 108 \, cm^2$

In ΔCDB,

Area of $\triangle CDB = 1/2 \times BD \times CM$

 $= 1/2 \times 24$ cm $\times 12$ cm

 $= 144 \text{ cm}^2$

Now,

Area of quadrilateral ABCD = Area of ΔADB + Area of ΔADB

 $= 108 \text{ cm}^2 + 144 \text{ cm}^2$

 $= 252 \text{ cm}^2$

Question: 25

Solution:

Given:

BC = 26 cm

DC = 26 cm

AD = 24 cm

BD = 26 cm

Ιη ΔΒCD,

Area of $\triangle BCD(equilateral) = \frac{\sqrt{3}}{4} \times side^2$

$$=\frac{\sqrt{3}}{4}\times 26^2$$

= 292.37 cm²

In ΔADB,

$$\Rightarrow$$
 AB² + AD² = DB²

$$\Rightarrow$$
 AB² = DB² - AD²

$$\Rightarrow$$
 AB² = 26² - 24²

$$\Rightarrow$$
 AB² = 676 - 576

$$\Rightarrow AB^2 = 100$$

Area of $\triangle ADB = 1/2 \times AB \times AD$

$$= 1/2 \times 10 \text{ cm} \times 24 \text{ cm}$$

Now.

Area of quadrilateral ABCD = Area of \triangle ADB + Area of \triangle BCD

$$= 120 \text{cm}^2 + 292.37 \text{ cm}^2$$

And.

Perimeter of quadrilateral ABCD = AB + BC + CD + DA

$$= 10 \text{ cm} + 26 \text{ cm} + 26 \text{ cm} + 24 \text{ cm}$$

Question: 26

Solution:

Given:

$$AC = 15 cm$$

$$AB = 17 cm$$

$$AD = 9 cm$$

$$CD = 12 cm$$

In ΔACB (right-angled),

 $Base^2 + Perpendicular^2 = Hypotenuse^2$

$$\Rightarrow$$
 BC² + AC² = AB²

$$\Rightarrow$$
 BC² = AB² - AC²

$$\Rightarrow BC^2 = 17^2 - 15^2$$

$$\Rightarrow$$
 BC² = 289 - 225

$$\Rightarrow$$
 BC² = 64

$$\Rightarrow$$
 BC= 8 cm

Area of $\triangle ACB = 1/2 \times BC \times AC$

$$= 1/2 \times 8 \text{ cm} \times 15 \text{ cm}$$

$$= 60 \text{ cm}^2$$

In AADC,

$$= 1/2 \times 9 \text{ cm} \times 12 \text{ cm}$$

$$= 54 \text{ cm}^2$$

Now,

Area of quadrilateral ABCD = Area of ΔACB + Area of ΔADC

$$= 60 \text{ cm}^2 + 54 \text{ cm}^2$$

$$= 114 \text{ cm}^2$$

And,

Perimeter of quadrilateral ABCD = AB + BC + CD + DA

$$= 17 \text{ cm} + 8 \text{ cm} + 12 \text{ cm} + 9 \text{ cm}$$

$$=46 \, \mathrm{cm}$$

Question: 27

Solution:

Given:

$$DB = 20 cm$$

$$AB = 42 \text{ cm}$$

$$AD = 34 \text{ cm}$$

$$CD = 29 \text{ cm}$$

$$CB = 21 cm$$

In ΔABD(scalene),

Area of a scalene triangle = $\sqrt{(s(s-AB)(s-BD)(s-AD))}$

Where,
$$s = \frac{AB + BD + AD}{2}$$

$$s = \frac{42 + 20 + 34}{2} \text{cm}$$

$$\Rightarrow$$
 s = $\frac{96}{2}$ cm

$$\Rightarrow$$
 s = 48 cm

Now,

Area of a scalene triangle = $\sqrt{(48 \text{cm} \times (48-42) \text{cm} \times (48-20) \text{cm} \times (48-34) \text{cm})}$

$$= \sqrt{(48 \text{ cm} \times 6 \text{ cm} \times 28 \text{ cm} \times 14 \text{ cm})}$$

$$=\sqrt{112896}$$
 cm²

$$= 336 \text{ cm}^2$$

Similarly,

In ΔBCD (scalene),

Area of a scalene triangle = $\sqrt{(s(s-BC)(s-CD)(s-BD))}$

Where,
$$s = \frac{BC + BD + CD}{2}$$

$$s = \frac{29 + 20 + 21}{2}$$
cm

$$\Rightarrow s = \frac{70}{2} \text{cm}$$

CLASS24

 \Rightarrow s = 35 cm

Now,

Area of a scalene triangle = $\sqrt{(35 \text{ cm} \times (35-29)\text{cm} \times (35-20)\text{cm} \times (35-21)\text{cm})}$

$$= \sqrt{(35 \text{ cm} \times 6 \text{ cm} \times 15 \text{ cm} \times 14 \text{ cm})}$$

- $=\sqrt{44100 \text{ cm}^2}$
- $= 210 \text{ cm}^2$

Now,

Area of quadrilateral ABCD = Area of \triangle ABD + Area of \triangle BCD

- $= 336 \text{ cm}^2 + 210 \text{ cm}^2$
- $= 546 \text{ cm}^2$

Question: 28

Solution:

Given:

Base = 25 cm

Height = 16.8 cm

Now,

Area of parallelogram = Base × Height

- $= 25 \text{ cm} \times 16.8 \text{ cm}$
- = 420 cm²

Question: 29

Solution:

Given:

Longer side = 32 cm

Shorter side = 24 cm

Distance between Longer sides = 17.4 cm

Now,

 $= 32 \text{ cm} \times 17.4 \text{ cm}$

 $= 556.8 \text{ cm}^2$

Also,

 $Area of parallelogram = Shorter \ side \times Distance \ between \ Shorter \ sides$

$$\Rightarrow$$
 556.8 cm² = 24 cm × x cm

$$\Rightarrow x = \frac{556.8}{24}$$

$$\Rightarrow$$
 x = 23.2 cm

Hence,

Distance between Shorter sides = 23.2 cm

Question: 30

Solution:

Given:

 $Area = 392 \text{ m}^2$

Base = b (let)

Height = 2b

Now,

Area of parallelogram = Base × Height

$$\Rightarrow$$
 392 = b × 2b

$$\Rightarrow$$
 392 = 2b²

$$\Rightarrow$$
 b² = 196

Hence,

Base = 14 cm

Altitude = $2 \times 14 = 28$ cm

Question: 31

Solution:

Given:

AB = 34 cm

BC = 20 cm

AC = 42 cm

In AABC (scalene),

Where,
$$s = \frac{AB + BC + AC}{2}$$

$$s \ = \ \frac{42 \ + \ 20 \ + \ 34}{2} \, cm$$

$$\Rightarrow s = \frac{96}{2} \text{cm}$$

$$\Rightarrow$$
 s = 48 cm

Now,

Area of a scalene triangle = $\sqrt{(48 \text{cm} \times (48-42) \text{cm} \times (48-20) \text{cm} \times (48-34) \text{cm})}$

$$= \sqrt{(48 \text{ cm} \times 6 \text{ cm} \times 28 \text{ cm} \times 14 \text{ cm})}$$

$$=\sqrt{112896}$$
 cm²

Now,

Area of parallelogram ABCD = $2 \times \text{Area of } \Delta ABC$

$$= 2 \times 336 \text{ cm}^2$$

$$= 672 \text{ cm}^2$$

Question: 32

Solution:

Given:

Length of diagonal 1 $(d_1) = 30 \text{ cm}$

Length of diagonal 2 $(d_2) = 16$ cm

Area of rhombus = $1/2 \times d_1 \times d_2$

$$= 1/2 \times 30 \text{ cm} \times 16 \text{ cm}$$

$$= 240 \text{ cm}^2$$

Now,

Side of rhombus = $1/2 \times \sqrt{(d_1^2 + d_2^2)}$

$$= 1/2 \times \sqrt{(30^2 + 16^2)}$$

$$= 1/2 \times \sqrt{(900 + 256)}$$

$$= 1/2 \times \sqrt{1156}$$

$$= 1/2 \times 34$$

Therefore,

Perimeter of rhombus = $4 \times \text{Side of rhombus}$

= 68 cm

Question: 33

Solution:

Given:

Perimeter of rhombus = 60 cm

Length of diagonal 1 (d_1) = 18 cm

Let, Length of diagonal 2 be dz

(i) Perimeter of rhombus = $4 \times \text{side}$

$$\Rightarrow$$
 60 = 4 × side

$$\Rightarrow$$
 side = $\frac{60}{4}$ = 15 cm

Now,

Side of rhombus = $1/2 \times \sqrt{(d_1^2 + d_2^2)}$

$$\Rightarrow 15 = 1/2 \times \sqrt{(18^2 + d_2^2)}$$

$$\Rightarrow 15 = 1/2 \times \sqrt{(324 + d_2^2)}$$

$$\Rightarrow 15 \times 2 = \sqrt{(324 + d_2^2)}$$

$$\Rightarrow 30 = \sqrt{(324 + d_2^2)}$$

Squaring both sides,

$$\Rightarrow$$
 900 = 324 + d₂²

$$\Rightarrow$$
 900-324 = d_{2^2}

$$\Rightarrow$$
 $d_2^2 = 576$

$$\Rightarrow$$
 d₂ = 24

Therefore,

Length of other diagonal = 24 cm

(ii) Area of rhombus = $1/2 \times d_1 \times d_2$

$$= 1/2 \times 18$$
 cm $\times 24$ cm

= 216 cm²

Question: 34

Solution:

Given:

Length of diagonal 1 $(d_1) = 48 \text{ cm}$

Let, Length of diagonal 2 be d2

(i) Area of rhombus = $1/2 \times d_1 \times d_2$

$$\Rightarrow 480 = 1/2 \times 48 \times d_2$$

$$\Rightarrow d_2 = \frac{480 \times 2}{48}$$

$$\Rightarrow$$
 d₂ = 20 cm

Therefore,

Length of other diagonal = 20 cm

(ii) Side of rhombus = $1/2 \times \sqrt{(48^2 + 20^2)}$

$$= 1/2 \times \sqrt{(2304 + 400)}$$

$$= 1/2 \times \sqrt{2704}$$

Therefore,

Side of rhombus = 26 cm

(iii) Perimeter of rhombus = 4 × side

$$= 4 \times 26 \text{ cm}$$

$$= 104 cm$$

Therefore,

Perimeter of rhombus = 104 cm

Question: 35

Solution:

Given:

Side 1 = 12 cm

Side 2 = 9 cm

Distance between sides = 8 cm

Area of trapezium = $1/2 \times Sum$ of parallel sides \times Distance between them

$$= 1/2 \times (12 + 9) \times 8$$

$$= 1/2 \times 21 \times 8$$

$$= 84 \, \text{cm}^2$$

Question: 36

Solution:

Given:

Top width = 10 m

Bottom width = 6 m

Area of cross section = 640 m²

Let the depth be h

Now,

Area of trapezium = $1/2 \times \text{Sum of parallel sides} \times \text{Distance between them}$

$$\Rightarrow$$
 640 = 1/2 × (10 + 6) × h

$$\Rightarrow$$
 640 × 2 = 16 h

$$\Rightarrow h = \frac{640 \times 2}{16}$$

$$\Rightarrow$$
 h = 80 m

Question: 37

Solution:

Given:

$$AB (say) = 11 cm$$

DC (say) =
$$25 \text{ cm}$$

$$AD (say) = 15 cm$$

BC (say) =
$$13 \text{ cm}$$

Draw AE || BC

Now the trapezium is divided into a triangle ADE and a parallelogram AECB.

Since, AECB is a parallelogram

Therefore, AE = BC = 13 cm

And, AB = EC

$$DE = DC - EC(= AB) = 25 - 11 = 14 cm$$

Now,

We know that,

Area of a scalene triangle ($\triangle AED$) = $\sqrt{(s(s-AE)(s-ED)(s-AD))}$

Where,
$$s = \frac{AE + ED + AD}{2}$$

$$s = \frac{13 + 14 + 15}{2} cm$$

$$\Rightarrow$$
 s = $\frac{42}{2}$ cm

$$\Rightarrow$$
 s = 21 cm

Now,

Area of a scalene triangle = $\sqrt{(21 \text{cm} \times (21\text{-}13)\text{cm} \times (21\text{-}14)\text{cm} \times (21\text{-}15)\text{cm})}$

$$= \sqrt{(21\text{cm} \times 8\text{cm} \times 7\text{cm} \times 6\text{cm})}$$

$$= \sqrt{7056} \text{ cm}^2$$

$$= 84 \text{ cm}^2$$

Also,

Area of a triangle = 1/2 × base × height

$$\Rightarrow$$
 84 = 1/2 × 14 × height

$$\Rightarrow$$
 height = $\frac{84 \times 2}{14}$

$$\Rightarrow$$
 height = 12 cm

Now,

Area of a parallelogram = base × height

$$= 11 \text{ cm} \times 12 \text{ cm}$$

$$= 132 \text{ cm}^2$$

Now,

Area of Trapezium ABCD = Area of \triangle ADE + Area of a parallelogram ABCE

$$= 84 \text{ cm}^2 + 132 \text{ cm}^2$$