

Chapter: 10. BINOMIAL THEOREM

Exercise: 10A

Question: 1

Solution:

To find: Expansion of $(1 - 2x)^5$

Formula used: (i) ${}^{n}C_{r} = \frac{n!}{(n-r)!(r)!}$

(ii)
$$(a+b)^n = {}^nC_0a^n + {}^nC_1a^{n-1}b + {}^nC_2a^{n-2}b^2 + \dots + {}^nC_{n-1}ab^{n-1} + {}^nC_nb^n$$

We have, $(1 - 2x)^5$

$$\Rightarrow [^{5}C_{0}(1)^{5}] + [^{5}C_{1}(1)^{5 \cdot 1}(-2x)^{1}] + [^{5}C_{2}(1)^{5 \cdot 2}(-2x)^{2}] + [^{5}C_{3}(1)^{5 \cdot 3}(-2x)^{3}] + [^{5}C_{4}(1)^{5 \cdot 4}(-2x)^{4}] + [^{5}C_{5}(-2x)^{5}]$$

$$\Rightarrow \left[\frac{5!}{0!(5-0)!} (1)^5 \right] - \left[\frac{5!}{1!(5-1)!} (1)^4 (2x) \right] + \left[\frac{5!}{2!(5-2)!} (1)^3 (4x^2) \right]$$

$$-\left[\frac{5!}{3!(5\text{-}3)!}\,(1)^2\big(8x^3\big)\right]+\left[\frac{5!}{4!(5\text{-}4)!}\,(1)^1\big(16x^4\big)\right]-\left[\frac{5!}{5!(5\text{-}5)!}\,(32x^5)\right]$$

$$\Rightarrow$$
 1 - 5(2x) + 10(4x²) - 10(8x³) + 5(16x⁴) - 1(32x⁵)

$$\Rightarrow$$
 1 - 10x + 40x² - 80x³ + 80x⁴ - 32x⁵

On rearranging

Ans)
$$-32x^5 + 80x^4 - 80x^3 + 40x^2 - 10x + 1$$

Ouestion: 2

Solution:

To find: Expansion of (2x - 3)6

Formula used: (i) ${}^{n}C_{r} = \frac{n!}{(n-r)!(r)!}$

(ii)
$$(a+b)^n = {}^nC_0a^n + {}^nC_1a^{n-1}b + {}^nC_2a^{n-2}b^2 + \dots + {}^nC_{n-1}ab^{n-1} + {}^nC_nb^n$$

We have, $(2x - 3)^6$

$$\Rightarrow [^{6}C_{0}(2x)^{6}] + [^{6}C_{1}(2x)^{6 \cdot 1}(-3)^{1}] + [^{6}C_{2}(2x)^{6 \cdot 2}(-3)^{2}] + [^{6}C_{3}(2x)^{6 \cdot 3}(-3)^{3}] + [^{6}C_{4}(2x)^{6 \cdot 4}(-3)^{4}] + [^{6}C_{5}(2x)^{6 \cdot 5}(-3)^{5}] + [^{6}C_{6}(-3)^{6}]$$

$$\Rightarrow \left[\frac{6!}{0!(6\text{-}0)!} (2x)^6\right] - \left[\frac{6!}{1!(6\text{-}1)!} (2x)^5(3)\right] + \left[\frac{6!}{2!(6\text{-}2)!} (2x)^4(9)\right]$$

$$-\left[\frac{6!}{3!(6\text{-}3)!} (2x)^3 (27)\right] + \left[\frac{6!}{4!(6\text{-}4)!} (2x)^2 (81)\right]$$

$$-\left[\frac{6!}{5!(6-5)!}(2x)^{1}(243)\right]+\left[\frac{6!}{6!(6-6)!}(729)\right]$$

$$\Rightarrow [(1)(64x^6)] - [(6)(32x^5)(3)] + [15(16x^4)(9)] - [20(8x^3)(27)] + [15(4x^2)(81)] - [(6)(2x)(243)] + [(1)(729)]$$

$$\Rightarrow 64x^6 - 576x^5 + 2160x^4 - 4320x^3 + 4860x^2 - 2916x + 729$$

Question: 3

Solution:

To find: Expansion of (3x + 2y)5

Formula used: (i) ${}^{n}C_{r} = \frac{n!}{(n-r)!(r)!}$

(ii)
$$(a+b)^n = {}^nC_0a^n + {}^nC_1a^{n-1}b + {}^nC_2a^{n-2}b^2 + \dots + {}^nC_{n-1}ab^{n-1} + {}^nC_nb^n$$

We have, (3x + 2y)5

$$\Rightarrow [^{5}C_{0}(3x)^{5\cdot0}] + [^{5}C_{1}(3x)^{5\cdot1}(2y)^{1}] + [^{5}C_{2}(3x)^{5\cdot2}(2y)^{2}] + [^{5}C_{3}(3x)^{5\cdot3}(2y)^{3}] + [^{5}C_{4}(3x)^{5\cdot4}(2y)^{4}] + [^{5}C_{5}(2y)^{5}]$$

$$\Rightarrow \left[\frac{5!}{0!(5-0)!} (243x^5) \right] + \left[\frac{5!}{1!(5-1)!} (81x^4)(2y) \right] + \left[\frac{5!}{2!(5-2)!} (27x^3)(4y^2) \right] + \left[\frac{5!}{3!(5-3)!} (9x^2)(8y^3) \right] + \left[\frac{5!}{4!(5-4)!} (3x)(16y^4) \right] + \left[\frac{5!}{5!(5-5)!} (32y^5) \right]$$

$$\Rightarrow [1(243x^5)] + [5(81x^4)(2y)] + [10(27x^3)(4y^2)] + [10(9x^2)(8y^3)] + [5(3x)(16y^4)] + [1(32y^5)]$$

$$\Rightarrow$$
 243x⁵ + 810x⁴y + 1080x³y² + 720x²y³ + 240xy⁴ + 32y⁵

Ans)
$$243x^5 + 810x^4y + 1080x^3y^2 + 720x^2y^3 + 240xy^4 + 32y^5$$

Question: 4

Solution:

To find: Expansion of $(2x - 3y)^4$

Formula used: (i) ${}^{n}C_{r} = \frac{n!}{(n-r)!(r)!}$

(ii)
$$(a+b)^n = {}^nC_0a^n + {}^nC_1a^{n-1}b + {}^nC_2a^{n-2}b^2 + \dots + {}^nC_{n-1}ab^{n-1} + {}^nC_nb^n$$

We have, $(2x - 3y)^4$

$$\Rightarrow [{}^{4}C_{0}(2x)^{4\cdot0}] + [{}^{4}C_{1}(2x)^{4\cdot1}(-3y)^{1}] + [{}^{4}C_{2}(2x)^{4\cdot2}(-3y)^{2}] + [{}^{4}C_{3}(2x)^{4\cdot3}(-3y)^{3}] + [{}^{4}C_{4}(-3y)^{4}]$$

$$\begin{split} &\left[\frac{4!}{0!(4\text{-}0)!}\,(2x)^4\right] - \left[\frac{4!}{1!(4\text{-}1)!}\,(2x)^3(3y)\right] + \left[\frac{4!}{2!(4\text{-}2)!}\,(2x)^2(9y^2)\right] - \\ &\left[\frac{4!}{3!(4\text{-}3)!}(2x)^1(27y^3)\right] + \left[\frac{4!}{4!(4\text{-}4)!}\,(81y^4)\right] \end{split}$$

$$\Rightarrow [1(16x^4)] - [4(8x^3)(3y)] + [6(4x^2)(9y^2)] - [4(2x)(27y^3)] + [1(81y^4)]$$

$$\Rightarrow 16x^4 - 96x^3y + 216x^2y^2 - 216xy^3 + 81y^4$$

Ans)
$$16x^4 - 96x^3y + 216x^2y^2 - 216xy^3 + 81y^4$$

Question: 5

Solution:

To find: Expansion of

$$\left(\frac{2x}{3} - \frac{3}{2x}\right)^6$$

Formula used: (i)
$${}^{n}C_{r} = \frac{n!}{(n-r)!(r)!}$$

(ii)
$$(a+b)^n = {}^nC_0a^n + {}^nC_1a^{n-1}b + {}^nC_2a^{n-2}b^2 + \dots + {}^nC_{n-1}ab^{n-1} + {}^nC_nb^n$$

We have,
$$\left(\frac{2x}{3} - \frac{3}{2x}\right)^6$$

$$\Rightarrow \left[{}^{6}C_{0} \left(\frac{2x}{3} \right)^{6-0} \right] + \left[{}^{6}C_{1} \left(\frac{2x}{3} \right)^{6-1} \left(-\frac{3}{2x} \right)^{1} \right] + \left[{}^{6}C_{2} \left(\frac{2x}{3} \right)^{6-2} \left(-\frac{3}{2x} \right)^{2} \right] + \left[{}^{6}C_{3} \left(\frac{2x}{3} \right)^{6-3} \left(-\frac{3}{2x} \right)^{3} \right] + \left[{}^{6}C_{4} \left(\frac{2x}{3} \right)^{6-4} \left(-\frac{3}{2x} \right)^{4} \right]$$

$$+ \left[{}^{6}C_{5} \left(\frac{2x}{3} \right)^{6-5} \left(-\frac{3}{2x} \right)^{5} \right] + \left[{}^{6}C_{6} \left(-\frac{3}{2x} \right)^{6} \right]$$

$$\Rightarrow \left[\frac{6!}{0!(6-0)!} \left(\frac{2x}{3} \right)^6 \right] - \left[\frac{6!}{1!(6-1)!} \left(\frac{2x}{3} \right)^5 \left(\frac{3}{2x} \right) \right] +$$

$$\left[\frac{6!}{2!(6-2)!} \left(\frac{2x}{3}\right)^4 \left(\frac{9}{4x^2}\right)\right] - \left[\frac{6!}{3!(6-3)!} \left(\frac{2x}{3}\right)^3 \left(\frac{27}{8x^3}\right)\right] +$$

$$\left[\frac{6!}{4!(6-4)!} \left(\frac{2x}{3}\right)^2 \left(\frac{81}{16x^4}\right)\right] - \left[\frac{6!}{5!(6-5)!} \left(\frac{2x}{3}\right)^1 \left(\frac{243}{32x^5}\right)\right]$$

$$+ \left[\frac{6!}{6!(6-6)!} \left(\frac{729}{64x^6} \right) \right]$$

$$\Rightarrow \left[1\left(\frac{64x^{6}}{729}\right)\right] - \left[6\left(\frac{32x^{5}}{243}\right)\left(\frac{3}{2x}\right)\right] + \left[15\left(\frac{16x^{4}}{81}\right)\left(\frac{9}{4x^{2}}\right)\right] - \left[20\left(\frac{8x^{3}}{27}\right)\right] + \left[15\left(\frac{4x^{2}}{8x^{3}}\right)\right] + \left[15\left(\frac{4x^{2}}{9}\right)\left(\frac{81}{16x^{4}}\right)\right] - \left[6\left(\frac{2x}{3}\right)\left(\frac{243}{32x^{5}}\right)\right] + \left[1\left(\frac{729}{64x^{6}}\right)\right]$$

$$\Rightarrow \frac{64}{729}x^6 - \frac{32}{27}x^4 + \frac{20}{3}x^2 - 20 + \frac{135}{4}\frac{1}{x^2} - \frac{243}{8}\frac{1}{x^4} + \frac{729}{64}\frac{1}{x^6}$$

Ans)
$$\frac{64}{729}$$
 $x^6 - \frac{32}{27}$ $x^4 + \frac{20}{3}$ $x^2 - 20 + \frac{135}{4}$ $\frac{1}{x^2} - \frac{243}{8}$ $\frac{1}{x^4} + \frac{729}{64}$ $\frac{1}{x^6}$

Question: 6

Solution:

To find: Expansion of
$$\left(x^2 - \frac{3x}{7}\right)^7$$

Formula used: (i)
$${}^{n}C_{r} = \frac{n!}{(n-r)!(r)!}$$

(ii)
$$(a+b)^n = {}^nC_0a^n + {}^nC_1a^{n-1}b + {}^nC_2a^{n-2}b^2 + \dots + {}^nC_{n-1}ab^{n-1} + {}^nC_nb^n$$

We have,
$$\left(x^2 - \frac{3x}{7}\right)^7$$

$$\begin{split} &\Rightarrow \left[\ ^{7}C_{0}(x^{2})^{7 \cdot 0} \right] + \left[\ ^{7}C_{1}(x^{2})^{7 \cdot 1} \left(-\frac{3x}{7} \right)^{1} \right] + \left[\ ^{7}C_{2}(x^{2})^{7 \cdot 2} \left(-\frac{3x}{7} \right)^{2} \right] + \\ &\left[\ ^{7}C_{3}(x^{2})^{7 \cdot 3} \left(-\frac{3x}{7} \right)^{3} \right] + \left[\ ^{7}C_{4}(x^{2})^{7 \cdot 4} \left(-\frac{3x}{7} \right)^{4} \right] + \left[\ ^{7}C_{5}(x^{2})^{7 \cdot 5} \left(-\frac{3x}{7} \right)^{5} \right] + \\ &\left[\ ^{7}C_{6}(x^{2})^{7 \cdot 6} \left(-\frac{3x}{7} \right)^{6} \right] + \left[\ ^{7}C_{7} \left(-\frac{3x}{7} \right)^{7} \right] \\ &\Rightarrow \left[\ \frac{7!}{0!(7 \cdot 0)!} \left(x^{2} \right)^{7} \right] - \left[\ \frac{7!}{1!(7 \cdot 1)!} \left(x^{2} \right)^{6} \left(\frac{3x}{7} \right) \right] + \left[\ \frac{7!}{2!(7 \cdot 2)!} \left(x^{2} \right)^{5} \left(\frac{9x^{2}}{49} \right) \right] - \\ &\left[\ \frac{7!}{3!(7 \cdot 3)!} \left(x^{2} \right)^{4} \left(\frac{27x^{3}}{343} \right) \right] + \left[\ \frac{7!}{4!(7 \cdot 4)!} \left(x^{2} \right)^{3} \left(\frac{81x^{4}}{2401} \right) \right] - \left[\ \frac{7!}{5!(7 \cdot 5)!} \left(x^{2} \right)^{2} \left(\frac{243x^{5}}{16807} \right) \right] + \left[\ \frac{7!}{6!(7 \cdot 6)!} \left(x^{2} \right)^{1} \left(\frac{729x^{6}}{117649} \right) \right] - \left[\ \frac{7!}{7!(7 \cdot 7)!} \left(\frac{2187x^{7}}{823543} \right) \right] \\ &\Rightarrow \left[\ 1(x^{14}) \right] - \left[\ 7(x^{12}) \left(\frac{3x}{7} \right) \right] + \left[\ 21(x^{10}) \left(\frac{9x^{2}}{49} \right) \right] - \left[\ 35(x^{6}) \left(\frac{27x^{3}}{343} \right) \right] + \\ \left[\ 35(x^{6}) \left(\frac{81x^{4}}{2401} \right) \right] - \left[\ 21(x^{4}) \left(\frac{243x^{5}}{16807} \right) \right] + \left[\ 7(x^{2}) \left(\frac{729x^{6}}{117649} \right) \right] - \\ \left[\ 1 \left(\frac{2187x^{7}}{823543} \right) \right] \end{aligned}$$

$$\Rightarrow x^{14} - 3x^{13} + \left(\frac{27}{7}\right)x^{12} - \left(\frac{135}{49}\right)x^{11} + \left(\frac{405}{343}\right)x^{10} - \left(\frac{729}{2401}\right)x^{9} + \left(\frac{729}{16807}\right)x^{8} - \left(\frac{2187}{823543}\right)x^{7}$$

$$x^{14} - 3x^{13} + \left(\frac{27}{7}\right)x^{12} - \left(\frac{135}{49}\right)x^{11} + \left(\frac{405}{343}\right)x^{10} - \left(\frac{729}{2401}\right)x^{9} + \left(\frac{729}{16807}\right)x^{8} - \left(\frac{2187}{823543}\right)x^{7}$$

$$\left(\frac{2187}{823543}\right)x^{7}$$
Ans)

Question: 7

Solution:

To find: Expansion of $\left(x-\frac{1}{y}\right)^5$

Formula used: (i) ${}^{n}C_{r} = \frac{n!}{(n-r)!(r)!}$

(ii)
$$(a+b)^n = {}^nC_0a^n + {}^nC_1a^{n-1}b + {}^nC_2a^{n-2}b^2 + \dots + {}^nC_{n-1}ab^{n-1} + {}^nC_nb^n$$

We have, $\left(\chi - \frac{1}{v}\right)^5$

$$\Rightarrow {}^{5}C_{0}(x)^{5 \cdot 0} + {}^{5}C_{1}(x)^{5 \cdot 1} \left(-\frac{1}{y}\right)^{1} + {}^{5}C_{2}(x)^{5 \cdot 2} \left(-\frac{1}{y}\right)^{2} + {}^{5}C_{3}(x)^{5 \cdot 3} \left(-\frac{1}{y}\right)^{3} + {}^{5}C_{4}(x)^{5 \cdot 4} \left(-\frac{1}{y}\right)^{4} + {}^{5}C_{5} \left(-\frac{1}{y}\right)^{5}$$

$$\Rightarrow \left[\frac{5!}{0!(5 \cdot 0)!} (x^{5})\right] - \left[\frac{5!}{1!(5 \cdot 1)!} (x^{4}) \left(\frac{1}{y}\right)^{1}\right] + \left[\frac{5!}{2!(5 \cdot 2)!} (x^{3}) \left(\frac{1}{y^{2}}\right)\right]$$

$$- \left[\frac{5!}{3!(5 \cdot 3)!} (x^{2}) \left(\frac{1}{y^{3}}\right)\right] + \left[\frac{5!}{4!(5 \cdot 4)!} (x) \left(\frac{1}{y^{4}}\right)\right] - \left[\frac{5!}{5!(5 \cdot 5)!} \left(\frac{1}{y^{5}}\right)\right]$$

$$\Rightarrow [1(x^5)] - \left[5\left(\frac{x^4}{y}\right)\right] + \left[10\left(\frac{x^3}{y^2}\right)\right] - \left[10\left(\frac{x^2}{y^3}\right)\right] + \left[5\left(\frac{x}{y^4}\right)\right] - [1(y^5)]$$

$$\Rightarrow x^5 - 5\frac{x^4}{y} + 10\frac{x^3}{y^2} - 10\frac{x^2}{y^3} + 5\frac{x}{y^4} - y^5$$

Ans)
$$x^5 - 5\frac{x^4}{y} + 10\frac{x^3}{y^2} - 10\frac{x^2}{y^3} + 5\frac{x}{y^4} - y^5$$

Question: 8

Solution:

To find: Expansion of $(\sqrt{x} + \sqrt{y})^8$

Formula used: (i) ${}^{n}C_{r} = \frac{n!}{(n-r)!(r)!}$

(ii)
$$(a+b)^n = {}^nC_0a^n + {}^nC_1a^{n-1}b + {}^nC_2a^{n-2}b^2 + \dots + {}^nC_{n-1}ab^{n-1} + {}^nC_nb^n$$

We have, $(\sqrt{x} + \sqrt{y})^8$

We can write $\sqrt{\chi}$ as $\chi^{\frac{1}{2}}$ and \sqrt{y} as $\chi^{\frac{1}{2}}$

Now, we have to solve for $(x^{\frac{1}{2}} + y^{\frac{1}{2}})^8$

$$\Rightarrow \begin{bmatrix} {}^{8}C_{0}\left(\frac{1}{x^{2}}\right)^{8-0} \end{bmatrix} + \begin{bmatrix} {}^{8}C_{1}\left(\frac{1}{x^{2}}\right)^{8-1}\left(\frac{1}{y^{2}}\right)^{1} \end{bmatrix} + \begin{bmatrix} {}^{8}C_{2}\left(\frac{1}{x^{2}}\right)^{8-2}\left(\frac{1}{y^{2}}\right)^{2} \end{bmatrix} + \\ \begin{bmatrix} {}^{8}C_{3}\left(\frac{1}{x^{2}}\right)^{8-3}\left(\frac{1}{y^{2}}\right)^{3} \end{bmatrix} + \begin{bmatrix} {}^{8}C_{4}\left(\frac{1}{x^{2}}\right)^{8-4}\left(\frac{1}{y^{2}}\right)^{4} \end{bmatrix} + \begin{bmatrix} {}^{8}C_{5}\left(\frac{1}{x^{2}}\right)^{8-5}\left(\frac{1}{y^{2}}\right)^{5} \end{bmatrix} + \\ \begin{bmatrix} {}^{8}C_{6}\left(\frac{1}{x^{2}}\right)^{8-6}\left(\frac{1}{y^{2}}\right)^{6} \end{bmatrix} + \begin{bmatrix} {}^{8}C_{7}\left(\frac{1}{x^{2}}\right)^{8-7}\left(\frac{1}{y^{2}}\right)^{7} \end{bmatrix} + \begin{bmatrix} {}^{8}C_{8}\left(\frac{1}{y^{2}}\right)^{8} \end{bmatrix}$$

$$\Rightarrow \left[\frac{8!}{0!(8-0)!} {\left(\frac{8}{x^{2}} \right)} \right] + \left[\frac{8!}{1!(8-1)!} {\left(\frac{2}{x^{2}} \right)} {\left(\frac{1}{y^{2}} \right)} \right] + \left[\frac{8!}{2!(8-2)!} {\left(\frac{2}{x^{2}} \right)} {\left(\frac{2}{y^{2}} \right)} \right] + \left[\frac{8!}{3!(8-3)!} {\left(\frac{5}{x^{2}} \right)} {\left(\frac{3}{y^{2}} \right)} \right] + \left[\frac{8!}{4!(8-4)!} {\left(\frac{1}{x^{2}} \right)} {\left(\frac{1}{y^{2}} \right)} \right] + \left[\frac{8!}{5!(8-5)!} {\left(\frac{1}{x^{2}} \right)} {\left(\frac{9}{y^{2}} \right)} \right] + \left[\frac{8!}{6!(8-6)!} {\left(\frac{2}{x^{2}} \right)} {\left(\frac{6}{y^{2}} \right)} \right] + \left[\frac{8!}{7!(8-7)!} {\left(\frac{1}{x^{2}} \right)} {\left(\frac{1}{y^{2}} \right)} \right] + \left[\frac{8!}{8!(8-8)!} {\left(\frac{8}{y^{2}} \right)} \right]$$

$$\Rightarrow [\mathbf{1}(x^4)] + \left[8\left(\frac{7}{x^2}\right)\left(y^{\frac{1}{2}}\right)\right] + [28\left(x^3\right)(y)] + \left[56\left(\frac{5}{x^2}\right)\left(y^{\frac{3}{2}}\right)\right]$$

$$+ \left[70(x^{2})(y^{2})\right] + \left[56\left(x^{\frac{3}{2}}\right)\left(y^{\frac{5}{2}}\right)\right] + \left[28(x^{1})(y^{3})\right] + \left[8\left(x^{\frac{1}{2}}\right)\left(y^{\frac{2}{2}}\right)\right] + \left[1(y^{4})\right]$$

Ans)
$$(x^4) + 8(x^{7/2})(y^{1/2}) + 28(x^3)(y) + 56(x^{5/2})(y^{3/2}) + 70(x^2)(y^2) + 56(x^{3/2})(y^{5/2}) + 28(x)^1(y)^3 + 8(x^{1/2})(y^{7/2}) + (y)^4$$

Question: 9

Solution:

To find: Expansion of

Formula used: (i) ${}^{n}C_{r} = \frac{\left(\sqrt[3]{\chi} \cdot n! \sqrt[3]{y}\right)^{6}}{(n-r)!(r)!}$

(ii)
$$(a+b)^n = {}^nC_0a^n + {}^nC_1a^{n-1}b + {}^nC_2a^{n-2}b^2 + \dots + {}^nC_{n-1}ab^{n-1} + {}^nC_nb^n$$

We have, $(\sqrt[3]{x} - \sqrt[3]{y})^6$

We can write $\sqrt[3]{x}$ as $\chi^{\frac{1}{3}}$ and $\sqrt[3]{y}$ as $\chi^{\frac{1}{3}}$

CLASS24

Now, we have to solve for $\left(\chi_{3}^{\frac{1}{3}}-\gamma_{3}^{\frac{1}{3}}\right)^{6}$

$$\Rightarrow \left[{}^{6}C_{0} \left(x_{3}^{\frac{1}{2}} \right)^{6-0} \right] + \left[{}^{6}C_{1} \left(x_{3}^{\frac{1}{2}} \right)^{6-1} \left(x_{3}^{\frac{1}{2}} \right)^{1} \right] + \left[{}^{6}C_{2} \left(x_{3}^{\frac{1}{2}} \right)^{6-2} \left(x_{3}^{\frac{1}{2}} \right)^{2} \right] + \\ \left[{}^{6}C_{3} \left(x_{3}^{\frac{1}{2}} \right)^{6-3} \left(x_{3}^{\frac{1}{2}} \right)^{3} \right] + \left[{}^{6}C_{4} \left(x_{3}^{\frac{1}{2}} \right)^{6-4} \left(x_{3}^{\frac{1}{2}} \right)^{4} \right] + \left[{}^{6}C_{5} \left(x_{3}^{\frac{1}{2}} \right)^{6-5} \left(x_{3}^{\frac{1}{2}} \right)^{5} \right] + \\ \left[{}^{6}C_{6} \left(x_{3}^{\frac{1}{2}} \right)^{6} \right]$$

$$\Rightarrow \begin{bmatrix} {}^{6}C_{0}\left(\begin{smallmatrix} \frac{5}{3} \end{smallmatrix} \right) \end{bmatrix} - \begin{bmatrix} {}^{6}C_{1}\left(\begin{smallmatrix} \frac{5}{3} \end{smallmatrix} \right) \left(\begin{smallmatrix} \frac{1}{3} \end{smallmatrix} \right) \end{bmatrix} + \begin{bmatrix} {}^{6}C_{2}\left(\begin{smallmatrix} \frac{4}{3} \end{smallmatrix} \right) \left(\begin{smallmatrix} \frac{2}{3} \end{smallmatrix} \right) \end{bmatrix} - \begin{bmatrix} {}^{6}C_{3}\left(\begin{smallmatrix} \frac{3}{3} \end{smallmatrix} \right) \left(\begin{smallmatrix} \frac{3}{3} \end{smallmatrix} \right) \end{bmatrix} + \begin{bmatrix} {}^{6}C_{4}\left(\begin{smallmatrix} \frac{2}{3} \end{smallmatrix} \right) \left(\begin{smallmatrix} \frac{4}{3} \end{smallmatrix} \right) \end{bmatrix} - \begin{bmatrix} {}^{6}C_{5}\left(\begin{smallmatrix} \frac{1}{3} \end{smallmatrix} \right) \left(\begin{smallmatrix} \frac{5}{3} \end{smallmatrix} \right) \end{bmatrix} + \begin{bmatrix} {}^{6}C_{6}\left(\begin{smallmatrix} \frac{5}{3} \end{smallmatrix} \right) \end{bmatrix}$$

$$\Rightarrow \left[\frac{6!}{0!(6\text{-}0)!}(x^2)\right] - \left[\frac{6!}{1!(6\text{-}1)!}\binom{\frac{5}{4}}{x^3}\binom{\frac{1}{4}}{y^3}\right] + \left[\frac{6!}{2!(6\text{-}2)!}\binom{\frac{4}{4}}{x^3}\binom{\frac{2}{4}}{y^3}\right]$$

$$-\left[\frac{6!}{3!(6\text{-}3)!}(_{x})(_{y})\right]+\left[\frac{6!}{4!(6\text{-}4)!}\binom{\frac{2}{3}}{(_{x^{\frac{3}{3}}})}\binom{\frac{4}{y^{\frac{3}{3}}}}{9!(6\text{-}5)!}\binom{\frac{1}{x^{\frac{3}{3}}}\binom{\frac{5}{y^{\frac{3}{3}}}}{9!(6\text{-}5)!}$$

$$+\left[\frac{6!}{6!(6-6)!}(y^2)\right]$$

$$\Rightarrow [\mathbf{1}(x^{2})] - \left[6\left(\frac{5}{x^{3}}\right)\left(\frac{1}{y^{3}}\right)\right] + \left[15\left(\frac{4}{x^{3}}\right)\left(\frac{1}{y^{3}}\right)\right] - [20(x)(y)] + \left[15\left(\frac{2}{x^{3}}\right)\left(\frac{4}{y^{3}}\right)\right] - \left[6\left(\frac{1}{x^{3}}\right)\left(\frac{5}{y^{3}}\right)\right] + \left[1(y^{2})\right]$$

$$\Rightarrow x^2 - 6x^{\frac{5}{3}\frac{1}{3}} + 15x^{\frac{4}{3}\frac{2}{3}} - 20xy + 15x^{\frac{2}{3}\frac{4}{3}} - 6x^{\frac{1}{3}\frac{5}{3}} + y^2$$

Ans)
$$x^2 - 6x^{5/3}y^{1/3} + 15x^{4/3}y^{2/3} - 20xy + 15x^{2/3}y^{4/3} - 6x^{1/3}y^{5/3} + y^2$$

Question: 10

Solution:

To find: Expansion of $(1 + 2x - 3x^2)^4$

Formula used: (i) ${}^{n}C_{r} = \frac{n!}{(n-r)!(r)!}$

(ii)
$$(a+b)^n = {}^nC_0a^n + {}^nC_1a^{n-1}b + {}^nC_2a^{n-2}b^2 + \dots + {}^nC_{n-1}ab^{n-1} + {}^nC_nb^n$$

We have, $(1 + 2x - 3x^2)^4$

Let
$$(1+2x) = a$$
 and $(-3x^2) = b$... (i)

Now the equation becomes (a + b)4

$$\Rightarrow \left[\, ^{4}C_{0}(a)^{4\cdot 0} \right] \, + \left[\, ^{4}C_{1}(a)^{4\cdot 1}(b)^{1} \right] \, + \left[\, ^{4}C_{2}(a)^{4\cdot 2}(b)^{2} \right] \, + \, \left[\, ^{4}C_{3}(a)^{4\cdot 3}(b)^{3} \right] + \, \left[\, ^{4}C_{4}(b)^{4} \right]$$

$$\Rightarrow [{}^{4}C_{0}(a)^{4}] + [{}^{4}C_{1}(a)^{3}(b)^{1}] + [{}^{4}C_{2}(a)^{2}(b)^{2}] + [{}^{4}C_{3}(a)(b)^{3}] + [{}^{4}C_{4}(b)^{4}]$$

(Substituting value of b from eqn. i)

$$\Rightarrow \left[\frac{4!}{0!(4-0)!} (a)^4\right] + \left[\frac{4!}{1!(4-1)!} (a)^3 (-3x^2)^1\right] + \left[\frac{4!}{2!(4-2)!} (a)^2 (-3x^2)^2\right]$$

+
$$\left[\frac{4!}{3!(4-3)!} (a) (-3x^2)^3\right] + \left[\frac{4!}{4!(4-4)!} (-3x^2)^4\right]$$

(Substituting value of b from eqn. i)

CLASS24

... (ii)

$$\Rightarrow [1(1+2x)^4] - [4(1+2x)^3(3x^2)] + [6(1+2x)^2(9x^4)] - [4(1+2x)(27x^6)^3] + [1(81x^8)^4]$$

We need the value of a^4 , a^3 and a^2 , where a = (1+2x)

For (1+2x)4, Applying Binomial theorem

$$(1+2x)^4 \Rightarrow {}^4C_0(1)^{4-0} + {}^4C_1(1)^{4-1}(2x)^1 + {}^4C_2(1)^{4-2}(2x)^2 + {}^4C_3(1)^{4-3}(2x)^3 + {}^4C_4(2x)^4$$

$$\Rightarrow \frac{4!}{0!(4\text{-}0)!} (1)^4 + \frac{4!}{1!(4\text{-}1)!} (1)^3 (2x)^1 + \frac{4!}{2!(4\text{-}2)!} (1)^2 (2x)^2$$

$$+\frac{4!}{3!(4-3)!}(1)(2x)^3+\frac{4!}{4!(4-4)!}(2x)^4$$

$$\Rightarrow [1] + [4(1)(2x)] + [6(1)(4x^2)] + [4(1)(8x^3)] + [1(16x^4)]$$

$$\Rightarrow 1 + 8x + 24x^2 + 32x^3 + 16x^4$$

We have
$$(1+2x)^4 = 1 + 8x + 24x^2 + 32x^3 + 16x^4$$
 ... (iii)

For $(a+b)^3$, we have formula $a^3+b^3+3a^2b+3ab^2$

For, $(1+2x)^3$, substituting a = 1 and b = 2x in the above formula

$$\Rightarrow$$
 1³+ (2x) ³+3(1)²(2x) +3(1) (2x) ²

$$\Rightarrow 1 + 8x^3 + 6x + 12x^2$$

$$\Rightarrow 8x^3 + 12x^2 + 6x + 1 \dots (iv)$$

For $(a+b)^2$, we have formula $a^2+2ab+b^2$

For, $(1+2x)^2$, substituting a = 1 and b = 2x in the above formula

$$\Rightarrow$$
 (1)² + 2(1)(2x) + (2x)²

$$\Rightarrow$$
 1 + 4x + 4x²

$$\Rightarrow$$
 4x² + 4x + 1 ... (v)

Putting the value obtained from eqn. (iii),(iv) and (v) in eqn. (ii)

$$\Rightarrow 1(1 + 8x + 24x^2 + 32x^3 + 16x^4) - 4(8x^3 + 12x^2 + 6x + 1)(3x^2)$$

$$+6(4x^2+4x+1)(9x^4)-4(1+2x)(27x^6)^3+1(81x^8)$$

$$\Rightarrow$$
 1(1 + 8x + 24x² + 32x³ + 16x⁴) - 4(24x⁵ + 36x⁴ + 18x³ + 3x²)

$$+6(36x^{6}+36x^{5}+9x^{4})-4(27x^{6}+54x^{7})+1(81x^{8})$$

$$\Rightarrow 1 + 8x + 24x^2 + 32x^3 + 16x^4 - 96x^5 - 144x^4 - 72x^3 - 12x^2 + 216x^6 + 216x^5 + 54x^4 - 108x^6 - 216x^7 + 81x^8$$

On rearranging

Ans)
$$81x^8 - 216x^7 + 108x^6 + 120x^5 - 74x^4 - 40x^3 + 12x^2 + 8x + 1$$

Question: 11

Solution:

To find: Expansion of

$$\left(1 + \frac{x}{2} - \frac{2}{x}\right)^4$$
, $x \neq 0$

Formula used: (i) ${}^{n}C_{r} = \frac{n!}{(n-r)!(r)!}$

(ii)
$$(a+b)^n = {}^nC_0a^n + {}^nC_1a^{n-1}b + {}^nC_2a^{n-2}b^2 + \dots + {}^nC_{n-1}ab^{n-1} + {}^nC_nb^n$$

We have,
$$(1 + \frac{x}{2} - \frac{2}{x})^4$$
, $x \neq 0$

Let
$$\left(1+\frac{x}{2}\right)$$
 = a and $\left(-\frac{2}{x}\right)$ = b ... (i)

Now the equation becomes (a + b)4

$$\Rightarrow [{}^{4}C_{0}(a){}^{4\cdot 0}] + [{}^{4}C_{1}(a){}^{4\cdot 1}(b){}^{1}] + [{}^{4}C_{2}(a){}^{4\cdot 2}(b){}^{2}] + [{}^{4}C_{3}(a){}^{4\cdot 3}(b){}^{3}] + [{}^{4}C_{4}(b){}^{4}]$$

$$\Rightarrow [{}^{4}C_{0}(a)^{4}] + [{}^{4}C_{1}(a)^{3}(b)^{1}] + [{}^{4}C_{2}(a)^{2}(b)^{2}] + [{}^{4}C_{3}(a)(b)^{3}] + [{}^{4}C_{4}(b)^{4}]$$

(Substituting value of b from eqn. i)

$$\Rightarrow \left[\frac{4!}{0!(4-0)!} (a)^4\right] + \left[\frac{4!}{1!(4-1)!} (a)^3 \left(-\frac{2}{x}\right)^4\right] + \left[\frac{4!}{2!(4-2)!} (a)^2 \left(-\frac{2}{x}\right)^2\right] + \left[\frac{4!}{3!(4-3)!} (a)^1 \left(-\frac{2}{x}\right)^3\right] + \left[\frac{4!}{4!(4-4)!} \left(-\frac{2}{x}\right)^4\right]$$

(Substituting value of a from eqn. i)

$$\Rightarrow \left[1\left(1+\frac{x}{2}\right)^4\right] - \left[4\left(1+\frac{x}{2}\right)^3\left(\frac{2}{x}\right)\right] + \left[6\left(1+\frac{x}{2}\right)^2\left(\frac{4}{x^2}\right)\right]$$
$$-\left[4\left(1+\frac{x}{2}\right)^1\left(\frac{8}{x^3}\right)\right] + \left[1\left(\frac{16}{x^4}\right)\right] \dots (ii)$$

We need the value of a^4 , a^3 and a^2 , where $a = \left(1 + \frac{x}{2}\right)$

For $\left(1+\frac{x}{2}\right)^4$, Applying Binomial theorem

$$\begin{split} &\left(1+\frac{x}{2}\right)^{4} = \left[{}^{4}C_{0}(1)^{4-0}\right] + \left[{}^{4}C_{1}(1)^{4} - 1\left(\frac{x}{2}\right)^{1}\right] + \left[{}^{4}C_{2}(1)^{4} - 2\left(\frac{x}{2}\right)^{2}\right] + \left[{}^{4}C_{3}(1)^{4} - 2\left(\frac{x}{2}\right)^{4}\right] + \left[{}^{4}C_{3}($$

$$\Rightarrow [1] + \left[4(1)\left(\frac{x}{2}\right)\right] + \left[6(1)\left(\frac{x^2}{4}\right)\right] + \left[4(1)\left(\frac{x^3}{8}\right)\right] + \left[1\left(\frac{x^4}{16}\right)\right]$$

$$\Rightarrow 1 + 2x + \frac{3}{2}x^2 + \frac{x^3}{2} + \frac{x^4}{16}$$

On rearranging the above eqn.

$$\Rightarrow \frac{1}{16} x^4 + \frac{1}{2} x^3 + \frac{3}{2} x^2 + 2x + 1 ... (iii)$$

We have,
$$\left(1 + \frac{x}{2}\right)^4 = \frac{1}{16}x^4 + \frac{1}{2}x^3 + \frac{3}{2}x^2 + 2x + 1$$

For, $(a+b)^3$, we have formula $a^3+b^3+3a^2b+3ab^2$

For, $\left(1+\frac{x}{2}\right)^3$, substituting a=1 and $b=\frac{x}{2}$ in the above formula

$$\Rightarrow 1^{3} + \left(\frac{x}{2}\right)^{3} + 3(1)^{2} \left(\frac{x}{2}\right) + 3(1) \left(\frac{x}{2}\right)^{2}$$

$$\Rightarrow 1 + \left(\frac{x^3}{8}\right) + \left(\frac{3x}{2}\right) + \left(\frac{3x^2}{4}\right)$$

$$\Rightarrow \left(\frac{x^3}{8}\right) + \left(\frac{3x^2}{4}\right) + \left(\frac{3x}{2}\right) + 1 \dots (iv)$$

For, $(a+b)^2$, we have formula $a^2+2ab+b^2$

For, $\left(1+\frac{x}{2}\right)^2$, substituting a=1 and $b=\frac{x}{2}$ in the above formula

$$\Rightarrow$$
 (1)² + 2(1) $\left(\frac{x}{2}\right) + \left(\frac{x}{2}\right)^2$

$$\Rightarrow$$
 1 + x + $\left(\frac{x^2}{4}\right)$

$$\Rightarrow \frac{x^2}{4} + x + 1 \dots (v)$$

Putting the value obtained from eqn. (iii),(iv) and (v) in eqn. (ii)

$$\Rightarrow \left[1\left(\frac{1}{16}x^4 + \frac{1}{2}x^3 + \frac{3}{2}x^2 + 2x + 1\right)\right] - \left[4\left(\frac{x^3}{8} + \frac{3x^2}{4} + \frac{3x}{2} + 1\right)\left(\frac{2}{x}\right)\right]$$

$$\left[6\left(\frac{x^2}{4} + x + 1\right)\left(\frac{4}{x^2}\right)\right] - \left[4\left(1 + \frac{x}{2}\right)\left(\frac{8}{x^3}\right)\right] + \left[1\left(\frac{16}{x^4}\right)\right]$$

$$\Rightarrow \frac{1}{16} x^4 + \frac{1}{2} x^3 + \frac{3}{2} x^2 + 2x + 1 - x^2 - 6x - 12 - \frac{8}{x} + 6 + \frac{24}{x} + \frac{24}{x^2}$$

$$-\frac{32}{x^3} - \frac{16}{x^2} + \frac{16}{x^4}$$

On rearranging

Ans)
$$\frac{1}{16} x^4 + \frac{1}{2} x^3 + \frac{1}{2} x^2 - 4x - 5 + \frac{16}{x} + \frac{8}{x^2} - \frac{32}{x^3} + \frac{16}{x^4}$$

Question: 12

Solution:

To find: Expansion of $(3x^2 - 2ax + 3a^2)^3$

Formula used: (i) ${}^{n}C_{r} = \frac{n!}{(n-r)!(r)!}$

(ii)
$$(a+b)^n = {}^nC_0a^n + {}^nC_1a^{n-1}b + {}^nC_2a^{n-2}b^2 + \dots + {}^nC_{n-1}ab^{n-1} + {}^nC_nb^n$$

We have, $(3x^2 - 2ax + 3a^2)^3$

Let,
$$(3x^2 - 2ax) = p ... (i)$$

The equation becomes $(p + 3a^2)^3$

$$\Rightarrow [{}^{3}C_{0}(p)^{3\text{-}0}\,] + [{}^{3}C_{1}(p)^{3\text{-}1}(3a^{2})^{1}] + [{}^{3}C_{2}(p)^{3\text{-}2}(3a^{2})^{2}] + [{}^{3}C_{3}\,(3a^{2})^{3}]$$

$$\Rightarrow [{}^{3}C_{0}(p)^{3}] + [{}^{3}C_{1}(p)^{2}(3a^{2})] + [{}^{3}C_{2}(p)(9a^{4})] + [{}^{3}C_{3}(27a^{6})]$$

Substituting the value of p from eqn. (i)

$$\Rightarrow \left[\frac{3!}{0!(3-0)!} \left(3x^2 - 2ax \right)^3 \right] + \left[\frac{3!}{1!(3-1)!} \left(3x^2 - 2ax \right)^2 (3a^2) \right]$$

+
$$\left[\frac{3!}{2!(3-2)!}(3x^2-2ax)(9a^4)\right]$$
 + $\left[\frac{3!}{3!(3-3)!}(27a^6)\right]$

$$\Rightarrow [1(3x^2 - 2ax)^3] + [3(3x^2 - 2ax)^2(3a^2)] + [3(3x^2 - 2ax)(9a^4)] + [1(27a^6)^3] \qquad ... (ii)$$

We need the value of p^3 and p^2 , where $p = 3x^2 - 2ax$

For, $(a+b)^3$, we have formula $a^3+b^3+3a^2b+3ab^2$

For, $(3x^2 - 2ax)^3$, substituting $a = 3x^2$ and b = -2ax in the above formula

$$\Rightarrow [(3x^2)^3] + [(-2ax)^3] + [3(3x^2)^2(-2ax)] + [3(3x^2)(-2ax)^2]$$

$$\Rightarrow 27x^6 - 8a^3x^3 - 54ax^5 + 36a^2x^4 \dots (iii)$$

For, $(a+b)^2$, we have formula $a^2+2ab+b^2$

For, $(3x^2 - 2ax)^3$, substituting $a = 3x^2$ and b = -2ax in the above formula

$$\Rightarrow [(3x^2)^2] + [2(3x^2)(-2ax)] + [(-2ax)^2]$$

$$\Rightarrow 9x^4 - 12x^3a + 4a^2x^2$$
 ... (iv)

Putting the value obtained from eqn. (iii) and (iv) in eqn. (ii)

$$\Rightarrow [1(27x^6 - 8a^3x^3 - 54ax^5 + 36a^2x^4)] +$$

$$[3(9x^4-12x^3a+4a^2x^2)(3a^2)]+[3(3x^2-2ax)(9a^4)]+[1(27a^6)]$$

$$\Rightarrow 27x^6 - 8a^3x^3 - 54ax^5 + 36a^2x^4 + 81a^2x^4 - 108x^3a^3 + 36a^4x^2 + 81a^4x^2 - 54a^5x + 27a^6$$

On rearranging

Ans)
$$27x^6 - 54ax^5 + 117a^2x^4 - 116x^3a^3 + 117a^4x^2 - 54a^5x + 27a^6$$

Question: 13

Solution:

To find: Value of
$$(\sqrt{2}+1)^6+(\sqrt{2}-1)^6$$

Formula used: (i)
$${}^{n}C_{r} = \frac{n!}{(n-r)!(r)!}$$

(ii)
$$(a+b)^n = {}^nC_0a^n + {}^nC_1a^{n-1}b + {}^nC_2a^{n-2}b^2 + \dots + {}^nC_{n-1}ab^{n-1} + {}^nC_nb^n$$

$$(a+1)^6 = { \begin{bmatrix} {}^6C_0a^6 \end{bmatrix}} + { \begin{bmatrix} {}^6C_1a^{6-1}1 \end{bmatrix}} + { \begin{bmatrix} {}^6C_2a^{6-2}1^2 \end{bmatrix}} + { \begin{bmatrix} {}^6C_3a^{6-3}1^3 \end{bmatrix}} + { \begin{bmatrix} {}^6C_4a^{6-4}1^4 \end{bmatrix}} + { \begin{bmatrix} {}^6C_5a^{6-5}1^5 \end{bmatrix}} + { \begin{bmatrix} {}^6C_61^6 \end{bmatrix}}$$

$$\Rightarrow {}^{6}C_{0}a^{6} + {}^{6}C_{1}a^{5} + {}^{6}C_{2}a^{4} + {}^{6}C_{3}a^{3} + {}^{6}C_{4}a^{2} + {}^{6}C_{5}a + {}^{6}C_{6} ... (i)$$

$$(a-1)^6 = \frac{[^6C_0a^6] + [^6C_1a^{6-1}(-1)^1] + [^6C_2a^{6-2}(-1)^2] + [^6C_3a^{6-3}(-1)^3] + [^6C_4a^{6-4}(-1)^4] + [^6C_5a^{6-5}(-1)^5] + [^6C_6(-1)^6]}$$

$$\Rightarrow$$
 ${}^{6}C_{0}a^{6} - {}^{6}C_{1}a^{5} + {}^{6}C_{2}a^{4} - {}^{6}C_{3}a^{3} + {}^{6}C_{4}a^{2} - {}^{6}C_{5}a + {}^{6}C_{6}$... (ii)

Adding eqn. (i) and (ii)

$$(a+1)^6 + (a-1)^6 = [^6C_0a^6 + ^6C_1a^5 + ^6C_2a^4 + ^6C_3a^3 + ^6C_4a^2 + ^6C_5a + ^6C_6] + [^6C_0a^6 - ^6C_1a^5 + ^6C_2a^4 - ^6C_3a^3 + ^6C_4a^2 - ^6C_5a + ^6C_6]$$

$$\Rightarrow 2[^{6}C_{0}a^{6} + ^{6}C_{2}a^{4} + ^{6}C_{4}a^{2} + ^{6}C_{6}]$$

$$\Rightarrow 2 \Big[\Big(\frac{6!}{0!(6-0)!} \, a^6 \Big) + \, \Big(\frac{6!}{2!(6-2)!} \, a^4 \Big) + \, \Big(\frac{6!}{4!(6-4)!} \, a^2 \, \Big) + \, \Big(\frac{6!}{6!(6-6)!} \Big) \Big]$$

$$\Rightarrow$$
 2[(1)a⁶ + (15)a⁴ + (15)a² + (1)]

$$\Rightarrow 2[a^6 + 15a^4 + 15a^2 + 1] = (a+1)^6 + (a-1)^6$$

Putting the value of $a = \sqrt{2}$ in the above equation

$$(\sqrt{2}+1)^6+(\sqrt{2}-1)^6=2[(\sqrt{2})^6+15(\sqrt{2})^4+15(\sqrt{2})^2+1]$$

$$\Rightarrow 2[8 + 15(4) + 15(2) + 1]$$

$$\Rightarrow 2[8 + 60 + 30 + 1]$$

Ans) 198

Question: 14

Solution:

To find: Value of $(\sqrt{3}+1)^5 - (\sqrt{3}-1)^5$

Formula used: (1)
$${}^{n}C_{r} = \frac{n!}{(n-r)!(r)!}$$

(ii)
$$(a+b)^n = {}^nC_0a^n + {}^nC_1a^{n-1}b + {}^nC_2a^{n-2}b^2 + \dots + {}^nC_{n-1}ab^{n-1} + {}^nC_nb^n$$

$$(a+1)^5 = {}^5C_0a^5 + {}^5C_1a^{5-1}1 + {}^5C_2a^{5-2}1^2 + {}^5C_3a^{5-3}1^3 + {}^5C_4a^{5-4}1^4 + {}^5C_51^5$$

$$\Rightarrow {}^{5}C_{0}a^{5} + {}^{5}C_{1}a^{4} + {}^{5}C_{2}a^{3} + {}^{5}C_{3}a^{2} + {}^{5}C_{4}a + {}^{5}C_{5}...(i)$$

$$(a-1)_5^{-1} = [{}^5C_0a^5] + [{}^5C_1a^{5-1}(-1)^1] + [{}^5C_2a^{5-2}(-1)^2] + [{}^5C_3a^{5-3}(-1)^3] + [{}^5C_4a^{5-4}(-1)^4] + [{}^5C_5(-1)^5]$$

$$\Rightarrow$$
 ${}^{5}C_{0}a^{5} - {}^{5}C_{1}a^{4} + {}^{5}C_{2}a^{3} - {}^{5}C_{3}a^{2} + {}^{5}C_{4}a - {}^{5}C_{5} ...$ (ii)

Substracting (ii) from (i)

$$(a+1)^5$$
 - $(a-1)^5$ = $[^5C_0a^5 + ^5C_1a^4 + ^5C_2a^3 + ^5C_3a^2 + ^5C_4a + ^5C_5]$ - $[^5C_0a^5 - ^5C_1a^4 + ^5C_2a^3 - ^5C_3a^2 + ^5C_4a - ^5C_5]$

$$\Rightarrow 2[^5C_1a^4 + ^5C_3a^2 + ^5C_5]$$

$$\Rightarrow 2 \Big[\Big(\frac{5!}{1!(5-1)!} \, a^4 \, \Big) + \, \Big(\frac{5!}{3!(5-3)!} \, a^2 \Big) + \, \Big(\frac{5!}{5!(5-5)!} \Big) \, \, \Big]$$

$$\Rightarrow 2[(5)a^4 + (10)a^2 + (1)]$$

$$\Rightarrow 2[5a^4 + 10a^2 + 1] = (a+1)^5 - (a-1)^5$$

Putting the value of $a = \sqrt{3}$ in the above equation

$$(\sqrt{3}+1)^5 - (\sqrt{3}-1)^5 = 2[5(\sqrt{3})^4 + 10(\sqrt{3})^2 + 1]$$

$$\Rightarrow$$
 2[(5)(9) + (10)(3) + 1]

$$\Rightarrow 2[45+30+1]$$

Ans) 152

Solution:

To find: Value of
$$(2+\sqrt{3})^7 + (2-\sqrt{3})^7$$

Formula used: (i)
$${}^{n}C_{r} = \frac{n!}{(n-r)!(r)!}$$

(ii)
$$(a+b)^n = {}^nC_0a^n + {}^nC_1a^{n-1}b + {}^nC_2a^{n-2}b^2 + \dots + {}^nC_{n-1}ab^{n-1} + {}^nC_nb^n$$

$$(\mathbf{a} + \mathbf{b})^7 = \begin{bmatrix} ^7C_0a^7 \end{bmatrix} + \begin{bmatrix} ^7C_1a^{7-1}b \end{bmatrix} + \begin{bmatrix} ^7C_2a^{7-2}b^2 \end{bmatrix} + \begin{bmatrix} ^7C_3a^{7-3}b^3 \end{bmatrix} + \begin{bmatrix} ^7C_4a^{7-4}b^4 \end{bmatrix} + \\ \begin{bmatrix} ^7C_5a^{7-5}b^5 \end{bmatrix} + \begin{bmatrix} ^7C_6a^{7-6}b^6 \end{bmatrix} + \begin{bmatrix} ^7C_7b^7 \end{bmatrix}$$

$$\Rightarrow {}^{7}C_{0}a^{7} + {}^{7}C_{1}a^{6}b + {}^{7}C_{2}a^{5}b^{2} + {}^{7}C_{3}a^{4}b^{3} + {}^{7}C_{4}a^{3}b^{4} + {}^{7}C_{5}a^{2}b^{5} + {}^{7}C_{6}a^{1}b^{6} + {}^{7}C_{7}b^{7} \dots (i)$$

$$(a-b)^7 = \begin{bmatrix} ^7C_0a^7 \end{bmatrix} + \begin{bmatrix} ^7C_1a^{7-1}(-b) \end{bmatrix} + \begin{bmatrix} ^7C_2a^{7-2}(-b)^2 \end{bmatrix} + \begin{bmatrix} ^7C_3a^{7-3}(-b)^3 \end{bmatrix} + \\ \begin{bmatrix} ^7C_4a^{7-4}(-b)^4 \end{bmatrix} + \begin{bmatrix} ^7C_5a^{7-5}(-b)^5 \end{bmatrix} + \begin{bmatrix} ^7C_6a^{7-6}(-b)^6 \end{bmatrix} + \begin{bmatrix} ^7C_7(-b)^7 \end{bmatrix}$$

$$\Rightarrow {}^{7}C_{0}a^{7} - {}^{7}C_{1}a^{6}b + {}^{7}C_{2}a^{5}b^{2} - {}^{7}C_{3}a^{4}b^{3} + {}^{7}C_{4}a^{3}b^{4} - {}^{7}C_{5}a^{2}b^{5} + {}^{7}C_{6}a^{1}b^{6} - {}^{7}C_{7}b^{7} ... (ii)$$

Adding eqn. (i) and (ii)

$$(a+b)^7 + (a-b)^7 = [^7C_0a^7 + ^7C_1a^6b + ^7C_2a^5b^2 + ^7C_3a^4b^3 + ^7C_4a^3b^4 + ^7C_5a^2b^5 + ^7C_6a^1b^6 + ^7C_7b^7] + [^7C_0a^7 - ^7C_1a^6b + ^7C_2a^5b^2 - ^7C_3a^4b^3 + ^7C_4a^3b^4 - ^7C_5a^2b^5 + ^7C_6a^1b^6 - ^7C_7b^7]$$

$$\Rightarrow 2[^{7}C_{0}a^{7} + ^{7}C_{2}a^{5}b^{2} + ^{7}C_{4}a^{3}b^{4} + ^{7}C_{6}a^{1}b^{6}]$$

$$\Rightarrow 2 \Biggl[\Biggl[\frac{7!}{o!(7\text{-}0)!} a^7 \Biggr] + \left[\ \frac{7!}{2!(7\text{-}2)!} \ a^5 b^2 \right] + \left[\frac{7!}{4!(7\text{-}4)!} a^3 b^4 \right] + \left[\frac{7!}{6!(7\text{-}6)!} a^1 b^6 \right] \Biggr]$$

$$\Rightarrow 2[(1)a^7 + (21)a^5b^2 + (35)a^3b^4 + (7)ab^6]$$

$$\Rightarrow 2[a^7 + 21a^5b^2 + 35a^3b^4 + 7ab^6] = (a+b)^7 + (a-b)^7$$

Putting the value of a = 2 and b = $\sqrt{3}$ in the above equation

$$(2+\sqrt{3})^7+(2-\sqrt{3})^7$$

$$= 2\left[\left\{2^{7}\right\} + \left\{21(2)^{5}\left(\sqrt{3}\right)^{2}\right\} + \left\{35(2)^{3}\left(\sqrt{3}\right)^{4}\right\} + \left\{7(2)\left(\sqrt{3}\right)^{6}\right\}\right]$$

$$= 2[128 + 21(32)(3) + 35(8)(9) + 7(2)(27)]$$

$$=2[128 + 2016 + 2520 + 378]$$

= 10084

Ans) 10084

Question: 16

Solution:

To find: Value of
$$(\sqrt{3}+\sqrt{2})^6-(\sqrt{3}-\sqrt{2})^6$$

Formula used: (i)
$${}^{n}C_{r} = \frac{n!}{(n-r)!(r)!}$$

(ii)
$$(a+b)^n = {}^nC_0a^n + {}^nC_1a^{n-1}b + {}^nC_2a^{n-2}b^2 + \dots + {}^nC_{n-1}ab^{n-1} + {}^nC_nb^n$$

$$(a+b)^6 = {}^6C_0a^6 + {}^6C_1a^{6-1}b + {}^6C_2a^{6-2}b^2 + {}^6C_3a^{6-3}b^3 + {}^6C_4a^{6-4}b^4 + {}^6C_5a^{6-5}b^5 + {}^6C_6b^6$$

$$\Rightarrow {}^{6}C_{0}a^{6} + {}^{6}C_{1}a^{5}b + {}^{6}C_{2}a^{4}b^{2} + {}^{6}C_{3}a^{3}b^{3} + {}^{6}C_{4}a^{2}b^{4} + {}^{6}C_{5}ab^{5} + {}^{6}C_{6}b^{6} \dots (i)$$

 $\Rightarrow {}^{6}C_{0}a^{6} - {}^{6}C_{1}a^{5}b + {}^{6}C_{2}a^{4}b^{2} - {}^{6}C_{3}a^{3}b^{3} + {}^{6}C_{4}a^{2}b^{4} - {}^{6}C_{5}ab^{5} + {}^{6}C_{6}b^{6} \dots (ii)$

Substracting (ii) from (i)

 $(a+b)^6 - (a-b)^6 = \left[^6C_0a^6 + ^6C_1a^5b + ^6C_2a^4b^2 + ^6C_3a^3b^3 + ^6C_4a^2b^4 + ^6C_5ab^5 + ^6C_6b^6 \right] - \left[^6C_0a^6 - ^6C_1a^5b + ^6C_2a^4b^2 - ^6C_3a^3b^3 + ^6C_4a^2b^4 - ^6C_5ab^5 + ^6C_6b^6 \right]$

 $=2[^{6}C_{1}a^{5}b + {^{6}C_{3}a^{3}b^{3}} + {^{6}C_{5}ab^{5}}]$

$$=2\left[\left\{\frac{6!}{1!(6-1)!}a^5a\right\}+\left\{\frac{6!}{3!(6-3)!}a^3b^3\right\}+\left\{\frac{6!}{5!(6-5)!}ab^5\right\}\right]$$

$$= 2[(6)a^5b + (20)a^3b^3 + (6)ab^5]$$

$$\Rightarrow$$
 (a+b)⁶ - (a-b)⁶ = 2[(6)a⁵b + (20)a³b³ + (6)ab⁵]

Putting the value of $a = \sqrt{3}$ and $b = \sqrt{2}$ in the above equation

$$\left(\sqrt{3}+\sqrt{2}\right)^6-\left(\sqrt{3}-\sqrt{2}\right)^6$$

$$\Rightarrow 2 \left[(6) (\sqrt{3})^5 (\sqrt{2}) + (20) (\sqrt{3})^3 (\sqrt{2})^3 + (6) (\sqrt{3}) (\sqrt{2})^5 \right]$$

$$\Rightarrow 2[54(\sqrt{6})+120(\sqrt{6})+24(\sqrt{6})]$$

Ans) 396√6

Question: 17

Prove that

Solution:

To prove:
$$\sum_{r=0}^{n} {}^{n}C_{r} \cdot 3^{r} = 4^{n}$$

Formula used:
$$\sum_{r=0}^{n} {}^{n}C_{r} \cdot a^{n-r}b^{r} = (a+b)^{n}$$

Proof: In the above formula if we put a = 1 and b = 3, then we will get $\sum_{r=0}^{n} {}^{n}C_{r}$. $\mathbf{1}^{n-r} \mathbf{3}^{r} = (1+3)^{n}$

Therefore,

$$\sum_{r=0}^{n} {}^{n}C_{r}.3^{r} = (4)^{n}$$

Hence Proved.

Question: 18

Using binominal t

Solution:

(i) (101)⁴

To find: Value of (101)4

Formula used: (i) ${}^{n}C_{r} = \frac{n!}{(n-r)!(r)!}$

(ii)
$$(a+b)^n = {}^nC_0a^n + {}^nC_1a^{n-1}b + {}^nC_2a^{n-2}b^2 + \dots + {}^nC_{n-1}ab^{n-1} + {}^nC_nb^n$$

$$101 = (100+1)$$

Now $(101)^4 = (100+1)^4$

$$(100+1)^4 = \begin{bmatrix} {}^4\text{C}_0(100)^{4\text{-}0} \,] + [{}^4\text{C}_1(100)^{4\text{-}1}(1)^1] + [{}^4\text{C}_2(100)^{4\text{-}2}(1)^2] + \\ [{}^4\text{C}_3(100)^{4\text{-}3}(1)^3] + [{}^4\text{C}_4(1)^4] \end{bmatrix}$$

$$\Rightarrow [{}^{4}C_{0}(100)^{4}] + [{}^{4}C_{1}(100)^{3}(1)^{1}] + [{}^{4}C_{2}(100)^{2}(1)^{2}] + [{}^{4}C_{3}(100)^{1}(1)^{3}] + [{}^{4}C_{4}(1)^{4}]$$

$$\Rightarrow \left[\frac{4!}{0!(4-0)!} (100000000) \right] + \left[\frac{4!}{1!(4-1)!} (1000000) \right] + \left[\frac{4!}{2!(4-2)!} (100000) \right] + \left[\frac{4!}{3!(4-3)!} (100) \right] + \left[\frac{4!}{4!(4-4)!} (1) \right]$$

= 104060401

Ans) 104060401

(ii) (98)4

To find: Value of (98)4

Formula used: (1)
$${}^{n}C_{r} = \frac{n!}{(n-r)!(r)!}$$

(ii)
$$(a+b)^n = {}^nC_0a^n + {}^nC_1a^{n-1}b + {}^nC_2a^{n-2}b^2 + \dots + {}^nC_{n-1}ab^{n-1} + {}^nC_nb^n$$

Now $(98)^4 = (100-2)^4$

$$(100-2)^4 \begin{bmatrix} {}^4C_0(100)^{4-0}] + [{}^4C_1(100)^{4-1}(-2)^1] + [{}^4C_2(100)^{4-2}(-2)^2] + \\ {}^4[{}^4C_3(100)^{4-3}(-2)^3] + [{}^4C_4(-2)^4] \end{bmatrix}$$

$$\Rightarrow [{}^{4}C_{0}(100)^{4}] - [{}^{4}C_{1}(100)^{3}(2)] + [{}^{4}C_{2}(100)^{2}(4)] - [{}^{4}C_{3}(100)^{1}(8)] + [{}^{4}C_{4}(16)]$$

$$\Rightarrow \left[\frac{4!}{0!(4-0)!} (100000000)\right] - \left[\frac{4!}{1!(4-1)!} (1000000)(2)\right] + \left[\frac{4!}{2!(4-2)!} (100000)(4)\right] - \left[\frac{4!}{3!(4-3)!} (100)(8)\right] + \left[\frac{4!}{4!(4-4)!} (16)\right]$$

$$\Rightarrow [(1)(100000000)] - [(4)(1000000)(2)] + [(6)(10000)(4)] - [(4)(100)(8)] + [(1)(16)]$$

= 92236816

Ans) 92236816

(iii) (1.2)4

To find: Value of (1.2)4

Formula used: (i)
$${}^{n}C_{r} = \frac{n!}{(n-r)!(r)!}$$

(ii)
$$(a+b)^n = {}^nC_0a^n + {}^nC_1a^{n-1}b + {}^nC_2a^{n-2}b^2 + \dots + {}^nC_{n-1}ab^{n-1} + {}^nC_nb^n$$

$$1.2 = (1 + 0.2)$$

Now
$$(1.2)^4 = (1 + 0.2)^4$$

$$(1+0.2)_4^{=} \begin{bmatrix} {}^4C_0(1)^{4-0}] + [{}^4C_1(1)^{4-1}(0.2)^1] + [{}^4C_2(1)^{4-2}(0.2)^2] + \\ [{}^4C_3(1)^{4-3}(0.2)^3] + [{}^4C_4(0.2)^4] \end{bmatrix}$$

$$\Rightarrow [^{4}C_{0}(1)^{4}] + [^{4}C_{1}(1)^{3}(0.2)^{1}] + [^{4}C_{2}(1)^{2}(0.2)^{2}] + [^{4}C_{3}(1)^{1}(0.2)^{3}] + [^{4}C_{4}(0.2)^{4}]$$

$$\Rightarrow \left[\frac{4!}{0!(4-0)!}(1)\right] + \left[\frac{4!}{1!(4-1)!}(1)(0.2)\right] + \left[\frac{4!}{2!(4-2)!}(1)(0.04)\right] + \left[\frac{4!}{3!(4-3)!}(1)(0.008)\right] + \left[\frac{4!}{4!(4-4)!}(0.0016)\right]$$

$$\Rightarrow [(1)(1)] + [(4)(1)(0.2)] + [(6)(1)(0.04)] + [(4)(1)(0.008)] + [(1)(0.0016)]$$

= 2.0736

Ans) 2.0736

Question: 19

Solution:

To prove: $(2^{3^n} - 7n - 1)$ is divisible by 49, where n N

Formula used: $(a+b)^n = {}^nC_0a^n + {}^nC_1a^{n-1}b + {}^nC_2a^{n-2}b^2 + \dots + {}^nC_{n-1}ab^{n-1} + {}^nC_nb^n$

$$(2^{3n} - 7n - 1) = (2^3)^n - 7n - 1$$

$$\Rightarrow 8^{n} - 7n - 1$$

$$\Rightarrow (1+7)^n - 7n - 1$$

$$\Rightarrow {}^{n}C_{0}1^{n} + {}^{n}C_{1}1^{n-1}7 + {}^{n}C_{2}1^{n-2}7^{2} + \dots + {}^{n}C_{n-1}7^{n-1} + {}^{n}C_{n}7^{n} - 7n - 1$$

$$\Rightarrow {}^{n}C_{0} + {}^{n}C_{1}7 + {}^{n}C_{2}7^{2} + \dots + {}^{n}C_{n-1}7^{n-1} + {}^{n}C_{n}7^{n} - 7n - 1$$

$$\Rightarrow 1 + 7n + 7^2[^{n}C_2 + ^{n}C_37 + ... + ^{n}C_{n-1}7^{n-3} + ^{n}C_n7^{n-2}] - 7n - 1$$

$$\Rightarrow 7^{2}[^{n}C_{2} + {^{n}C_{3}}7 + ... + {^{n}C_{n-1}}7^{n-3} + {^{n}C_{n}}7^{n-2}]$$

$$\Rightarrow 49[{}^{\rm n}{\rm C}_2 + {}^{\rm n}{\rm C}_37 + ... + {}^{\rm n}{\rm C}_{\rm n-1}7^{\rm n-3} + {}^{\rm n}{\rm C}_{\rm n}7^{\rm n-2}]$$

$$\Rightarrow$$
 49K, where K = $\binom{n}{C_2} + \binom{n}{C_3} + \dots + \binom{n}{C_{n-1}} + \binom{n-3}{1} + \binom{n}{C_n} + \binom{n-2}{1}$

Now,
$$(2^{3n} - 7n - 1) = 49K$$

Therefore $(2^{3n} - 7n - 1)$ is divisible by 49

Question: 20

Solution:

To prove:

Formula used: (i)
$${}^{0}C_{r}^{+} = \frac{(2-\sqrt{x})!}{(n-r)!(r)!} = 2(16+24x+x^{2})$$

(ii)
$$(a+b)^n = {}^nC_0a^n + {}^nC_1a^{n-1}b + {}^nC_2a^{n-2}b^2 + \dots + {}^nC_{n-1}ab^{n-1} + {}^nC_nb^n$$

$$(a+b)^4 = {}^4C_0a^4 + {}^4C_1a^{4-1}b + {}^4C_2a^{4-2}b^2 + {}^4C_3a^{4-3}b^3 + {}^4C_4b^4$$

$$\Rightarrow {}^4{\rm C}_0{\rm a}^4 + {}^4{\rm C}_1{\rm a}^3{\rm b} + {}^4{\rm C}_2{\rm a}^2{\rm b}^2 + {}^4{\rm C}_3{\rm a}^1{\rm b}^3 + {}^4{\rm C}_4{\rm b}^4 \ ... \ (i)$$

$$(a-b)^4 = {}^4C_0a^4 + {}^4C_1a^{4-1}(-b) + {}^4C_2a^{4-2}(-b)^2 + {}^4C_3a^{4-3}(-b)^3 + {}^4C_4(-b)^4$$

 $\Rightarrow {}^4{\rm C}_0{\rm a}^4 - {}^4{\rm C}_1{\rm a}^3{\rm b} + {}^4{\rm C}_2{\rm a}^2{\rm b}^2 - {}^4{\rm C}_3{\rm a}{\rm b}^3 + {}^4{\rm C}_4{\rm b}^4 \ ... \ (ii)$

Adding (i) and (ii)

 $(a+b)^4 + (a-b)^7 = [^4C_0a^4 + ^4C_1a^3b + ^4C_2a^2b^2 + ^4C_3a^1b^3 + ^4C_4b^4] + [^4C_0a^4 - ^4C_1a^3b + ^4C_2a^2b^2 - ^4C_3ab^3 + ^4C_4b^4]$

$$\Rightarrow 2[^{4}C_{0}a^{4} + {^{4}C_{2}a^{2}b^{2}} + {^{4}C_{4}b^{4}}]$$

$$\Rightarrow 2 \Big[\Big(\frac{4!}{0!(4\!-\!0)!} \, a^4 \Big) + \Big(\frac{4!}{2!(4\!-\!2)!} \, a^2 b^2 \Big) + \, \Big(\frac{4!}{4!(4\!-\!4)!} \, b^4 \Big) \Big]$$

$$\Rightarrow 2[(1)a^4 + (6)a^2b^2 + (1)b^4]$$

$$\Rightarrow 2[a^4 + 6a^2b^2 + b^4]$$

Therefore, $(a+b)^4 + (a-b)^7 = 2[a^4 + 6a^2b^2 + b^4]$

Now, putting a = 2 and $b = (\sqrt{x})$ in the above equation.

$$(2+\sqrt{x})^4+(2-\sqrt{x})^4=2[(2)^4+6(2)^2(\sqrt{x})^2+(\sqrt{x})^4]$$

$$= 2(16+24x+x^2)$$

Hence proved.

Question: 21

Solution:

To find: 7th term in the expansion of $\left(\frac{4x}{5} + \frac{5}{2x}\right)^8$

Formula used: (i) ${}^{n}C_{r} = \frac{n!}{(n-r)!(r)!}$

(ii)
$$T_{r+1} = {}^{n}C_{r} a^{n-r} b^{r}$$

For 7^{th} term, r+1=7

$$\Rightarrow r = 6$$

In,
$$\left(\frac{4x}{5} + \frac{5}{2x}\right)^8$$

$$7^{\text{th}} \text{ term} = T_{6+1}$$

$$\Rightarrow$$
 ${}^{8}C_{6}\left(\frac{4x}{5}\right)^{8-6}\left(\frac{5}{2x}\right)^{6}$

$$\Rightarrow \frac{8!}{6!(8-6)!} \left(\frac{4x}{5}\right)^2 \left(\frac{5}{2x}\right)^6$$

$$\Rightarrow (28) \left(\frac{16x^2}{25}\right) \left(\frac{15625}{64x^6}\right)$$

$$\Rightarrow \frac{4375}{4}$$

Ans)
$$\frac{4375}{x^4}$$

Question: 22

Solution:

Formula used: (i) ${}^{n}C_{r} = \frac{n!}{(n-r)!(r)!}$

(ii)
$$T_{r+1} = {}^{n}C_{r} a^{n-r} b^{r}$$

For 9^{th} term, r+1=9

$$\Rightarrow r = 8$$

In,
$$\left(\frac{a}{b} - \frac{b}{2a^2}\right)^{12}$$

$$9^{th} term = T_{8+1}$$

$$\Rightarrow {}^{12}C_{8}\left(\frac{a}{b}\right)^{12\cdot8}\left(\frac{-b}{2a^{2}}\right)^{8}$$

$$\Rightarrow \frac{12!}{8!(12-8)!} \left(\frac{a}{b}\right)^4 \left(\frac{-b}{2a^2}\right)^8$$

$$\Rightarrow 495 \left(\frac{a^4}{b^4}\right) \left(\frac{b^8}{256a^{16}}\right)$$

$$\Rightarrow \left(\frac{495b^4}{256a^{12}}\right)$$

Ans)
$$\left(\frac{495 \, b^4}{256 \, a^{12}}\right)$$

Question: 23

Solution:

To find: 16th term in the expansion of $(\sqrt{\chi} - \sqrt{y})^{17}$

Formula used: (i) ${}^{n}C_{r} = \frac{n!}{(n-r)!(r)!}$

(ii)
$$T_{r+1} = {}^{n}C_{r} a^{n-r} b^{r}$$

For 16^{th} term, r+1=16

In,
$$(\sqrt{x} - \sqrt{y})^{17}$$

$$16^{th}$$
 term = T_{15+1}

$$\Rightarrow {}^{17}C_{15}\left(\sqrt{x}\right)^{{}^{17\cdot15}}\!\left(.\sqrt{y}\right)^{{}^{15}}$$

$$\Rightarrow \frac{17!}{15!(17-15)!} (\sqrt{x})^{2} (-\sqrt{y})^{15}$$

$$\Rightarrow 136(x)(-y)^{\frac{15}{2}}$$

⇒ -136x
$$\sqrt{\frac{15}{2}}$$
Ans) -136x $\sqrt{\frac{15}{2}}$

Question: 24

Solution:

Formula used: (i) ${}^{n}C_{r} = \frac{n!}{(n-r)!(r)!}$

(ii)
$$T_{r+1} = {}^{n}C_{r} a^{n-r} b^{r}$$

For 13^{th} term, r+1=13

$$\Rightarrow$$
 r = 12

In,
$$\left(9x - \frac{1}{3\sqrt{x}}\right)^{18}$$

$$13^{th}$$
 term = T_{12+1}

$$\Rightarrow {}^{18}C_{12}(9x)^{{}^{18-12}}\left(-\frac{1}{3\sqrt{x}}\right)^{12}$$

$$\Rightarrow \frac{18!}{12!(18-12)!}(9x)^{5}\left(-\frac{1}{3\sqrt{x}}\right)^{12}$$

$$\Rightarrow 18564 \left(531441 x^{6}\right) \left(\frac{1}{531441 x^{6}}\right)$$

Question: 25

Solution:

<u>To find</u>: coefficients of x^7 and x^8

$$\underline{Formula} : t_{r+1} = \binom{n}{r} a^{n-r} b^r$$

Here,
$$a=2, b = \frac{x}{3}$$

We have,
$$t_{r+1} = \binom{n}{r} a^{n-r} b^r$$

$$\dot{\cdot} t_{r+1} = \binom{n}{r} (2)^{n-r} \left(\frac{x}{3}\right)^{r}$$

$$= \binom{n}{r} \frac{2^{n-r}}{3^r} x^r$$

To get a coefficient of x7, we must have,

$$x^7 = x^r$$

Therefore, the coefficient of $x^7 = \binom{n}{7} \frac{2^{n-7}}{2^7}$

And to get the coefficient of x8 we must have,

$$x^8 = x^r$$

Therefore, the coefficient of $x^8 = \binom{n}{8} \frac{2^{n-8}}{3^8}$

Conclusion:

• coefficient of
$$x^7 = \binom{n}{7} \frac{2^{n-7}}{3^7}$$

Question: 26

Solution:

To Find: the ratio of the coefficient of x15 to the term independent of x

$$\underline{Formula} : t_{r+1} = \binom{n}{r} a^{n-r} b^r$$

Here,
$$a=x^2$$
, $b = \frac{2}{x}$ and $n=15$

We have a formula,

$$t_{r+1} = \binom{n}{r} \ a^{n-r} \ b^r$$

$$= {15 \choose r} (x^2)^{15-r} \left(\frac{2}{x}\right)^r$$

$$= {15 \choose r} (x)^{30-2r} (2)^r (x)^{-r}$$

$$=\binom{15}{r}(x)^{30-2r-r}(2)^r$$

$$=\binom{15}{r}(2)^r(x)^{30-3r}$$

To get coefficient of x¹⁵ we must have,

$$(x)^{30-3r} = x^{15}$$

•
$$30 - 3r = 15$$

•
$$3r = 15$$

•
$$r = 5$$

Therefore, coefficient of $x^{15} = \binom{15}{5} (2)^5$

Now, to get coefficient of term independent of xthat is coefficient of x^0 we must have,

$$(x)^{30-3r} = x^0$$

•
$$30 - 3r = 0$$

•
$$3r = 30$$

•
$$r = 10$$

Therefore, coefficient of $x^0 = \binom{15}{10} (2)^{10}$

$$But\binom{15}{10} = \binom{15}{5} \dots \left[\because \binom{n}{r} = \binom{n}{n-r} \right]$$

Therefore, the coefficient of $x^0 = \binom{15}{5} (2)^{10}$

Therefore,

$$\frac{\text{coefficient of } x^{15}}{\text{coefficient of } x^0} = \frac{\binom{15}{5} (2)^5}{\binom{15}{5} (2)^{10}}$$

$$=\frac{1}{(2)^5}$$

Hence, coefficient of x^{15} : coefficient of $x^0 = 1:32$

<u>Conclusion</u>: The ratio of coefficient of x^{15} to coefficient of $x^0 = 1.32$

Question: 27

Solution:

<u>To Prove</u>: coefficient of x^{10} in $(1-x^2)^{10}$: coefficient of x^0 in $\left(x-\frac{2}{x}\right)^{10}=1:32$

For $(1-x^2)^{10}$,

Here, a=1, $b=-x^2$ and n=15

We have formula,

$$t_{r+1} = \binom{n}{r} a^{n-r} b^r$$

$$=\binom{10}{r}(1)^{10-r}(-x^2)^r$$

$$=-\binom{10}{r}(1)(x)^{2r}$$

To get coefficient of x¹⁰ we must have,

$$(x)^{2r} = x^{10}$$

•
$$2r = 10$$

Therefore, coefficient of $x^{10} = -\binom{10}{5}$

For
$$\left(x-\frac{2}{x}\right)^{10}$$
,

Here, a=x, $b = \frac{-2}{x}$ and n=10

We have a formula,

$$t_{r+1} = \binom{n}{r} a^{n-r} b^r$$

$$= {10 \choose r} (x)^{10-r} \left(\frac{-2}{x}\right)^r$$

$$= \binom{10}{r} (x)^{10-r} (-2)^r (x)^{-r}$$

$$=\binom{10}{r}(x)^{10-r-r}(-2)^r$$

$$=\binom{10}{r}(-2)^r(x)^{10-2r}$$

Now, to get coefficient of term independent of xthat is coefficient of x0 we must have,

$$(x)^{10-2r} = x^0$$

•
$$10 - 2r = 0$$

•
$$2r = 10$$

Therefore, coefficient of $x^0 = -\binom{10}{5}(2)^5$

Therefore,

$$\frac{\text{coefficient of } x^{10} \text{ in } (1-x^2)^{10}}{\text{coefficient of } x^0 \text{ in } \left(x-\frac{2}{x}\right)^{10}} = \frac{-\binom{15}{5}}{-\binom{15}{5}(2)^5}$$

$$=\frac{1}{(2)^5}$$

$$=\frac{1}{32}$$

Hence,

coefficient of x^{10} in $(1-x^2)^{10}$: coefficient of x^0 in $\left(x-\frac{2}{x}\right)^{10}=1:32$

Question: 28

Solution:

To Find: term independent of x, i.e. coefficient of x0

 $\underline{Formula}: t_{r+1} = \binom{n}{r} a^{n-r} b^r$

We have a formula,

$$t_{r+1} = \binom{n}{r} \ a^{n-r} \ b^r$$

Therefore, the expansion of $\left(\mathbf{x} - \frac{2}{y}\right)^{10}$ is given by,

$$\left(x - \frac{2}{x}\right)^{10} = \sum_{r=0}^{10} {10 \choose r} (x)^{10-r} \left(\frac{-2}{x}\right)^{r}$$

$$= {10 \choose 0} (x)^{10} \left(\frac{-2}{x}\right)^0 + {10 \choose 1} (x)^9 \left(\frac{-2}{x}\right)^1 + {10 \choose 2} (x)^8 \left(\frac{-2}{x}\right)^2 + \dots \dots \dots + {10 \choose 10} (x)^0 \left(\frac{-2}{x}\right)^{10}$$

$$=x^{10} + \binom{10}{1} (x)^9 (-2) \frac{1}{x} + \binom{10}{2} (x)^8 (-2)^2 \frac{1}{x^2} + \dots + \binom{10}{10} (x)^0 (-2)^{10} \frac{1}{x^{10}}$$

$$=x^{10}-(2)\binom{10}{1}(x)^{8}+(2)^{2}\binom{10}{2}(x)^{6}+\cdots...+(2)^{10}\binom{10}{10}\frac{1}{x^{10}}$$

Now,

$$(91 + x + 2x^{3}) \left(x - \frac{2}{x}\right)^{10}$$

$$= (91 + x + 2x^{3}) \left(x^{10} - (2) {10 \choose 1} (x)^{8} + (2)^{2} {10 \choose 2} (x)^{6} + \dots + (2)^{10} {10 \choose 10} \frac{1}{x^{10}}\right)$$

Multiplying the second bracket by 91, x and 2x3

$$= \left\{ 91x^{10} - 91(2) \binom{10}{1} (x)^8 + 91(2)^2 \binom{10}{2} (x)^6 + \dots + 91(2)^{10} \binom{10}{10} \frac{1}{x^{10}} \right\}$$
CLASS24

$$+\left\{x.x^{10}-x.(2)\binom{10}{1}(x)^{8}+x.(2)^{2}\binom{10}{2}(x)^{6}+\cdots\dots\dots +x.(2)^{10}\binom{10}{10}\frac{1}{x^{10}}\right\} +\left\{2x^{3}.x^{10}-2x^{3}.(2)\binom{10}{1}(x)^{8}+2x^{3}.(2)^{2}\binom{10}{2}(x)^{6}+\cdots\dots +2x^{3}.(2)^{10}\binom{10}{10}\frac{1}{x^{10}}\right\}$$

In the first bracket, there will be a 6^{th} term of x^0 having coefficient $91(-2)^5\binom{10}{5}$

While in the second and third bracket, the constant term is absent.

Therefore, the coefficient of term independent of x, i.e. constant term in the above expansion

$$= 91(-2)^{5} {10 \choose 5}$$
$$= -91. (2)^{5} \frac{10 \times 9 \times 8 \times 7 \times 6}{5 \times 4 \times 3 \times 2 \times 1}$$

Conclusion: coefficient of term independent of $x = -91(2)^5$ (252)

Question: 29

Solution:

To Find: coefficient of x

$$\underline{Formula}: t_{r+1} = \binom{n}{r} a^{n-r} b^r$$

We have a formula,

$$\mathsf{t}_{r+1} = \binom{n}{r} \ \mathsf{a}^{n-r} \ \mathsf{b}^r$$

Therefore, expansion of $(1-x)^{16}$ is given by,

$$(1-x)^{16} = \sum_{r=0}^{16} {16 \choose r} (1)^{16-r} (-x)^r$$

$$= {16 \choose 0} (1)^{16} (-x)^0 + {16 \choose 1} (1)^{15} (-x)^1 + {16 \choose 2} (1)^{14} (-x)^2 + \cdots + {16 \choose 16} (1)^0 (-x)^{16}$$

$$=1-\binom{16}{1}x+\binom{16}{2}x^2+\cdots +\binom{16}{16}x^{16}$$

Now,

$$(1-3x+7x^2)(1-x)^{16}$$

$$= (1-3x+7x^2)\left(1-\binom{16}{1}x+\binom{16}{2}x^2+\cdots +\binom{16}{16}x^{16}\right)$$

Multiplying the second bracket by 1, (-3x) and 7x2

$$\begin{split} &= \left(1 - \binom{16}{1} x + \binom{16}{2} x^2 + \dots + \binom{16}{16} x^{16} \right) \\ &\quad + \left(-3x + 3x \binom{16}{1} x - 3x \binom{16}{2} x^2 + \dots - 3x \binom{16}{16} x^{16} \right) \\ &\quad + \left(7x^2 - 7x^2 \binom{16}{1} x + 7x^2 \binom{16}{2} x^2 + \dots + 7x^2 \binom{16}{16} x^{16} \right) \end{split}$$

In the above equation terms containing x are

$$-\binom{16}{1}$$
 x and -3x

Therefore, the coefficient of x in the above expansion

$$=-\binom{16}{1}-3$$

Conclusion: coefficient of x = -19

Question: 30

Solution:

(i) Here, a=x, b=3 and n=8

We have a formula,

$$t_{r+1} = \binom{n}{r} a^{n-r} b^r$$

$$=\binom{8}{r}(x)^{8-r}(3)^{r}$$

$$=\binom{8}{r}(3)^r(x)^{8-r}$$

To get coefficient of x5 we must have,

$$(x)^{8-r} = x^5$$

•
$$8 - r = 5$$

$$r = 3$$

Therefore, coefficient of $x^5 = {8 \choose 3}(3)^3$

$$=\frac{8\times7\times6}{3\times2\times1}.(27)$$

(ii) Here,
$$a=3x^2$$
, $b=\frac{-1}{3x}$ and $n=9$

We have a formula,

$$t_{r+1} = \binom{n}{r} a^{n-r} b^r$$

$$=\binom{9}{r}(3x^2)^{9-r}\left(\frac{-1}{3x}\right)^r$$

$$= \binom{9}{r} (3)^{9-r} (x^2)^{9-r} \left(\frac{-1}{3}\right)^r (x)^{-r}$$

$$= \binom{9}{r} (3)^{9-r} (x)^{18-2r} \left(\frac{-1}{3}\right)^{r} (x)^{-r}$$

$$= \binom{9}{r} (3)^{9-r} (x)^{18-2r-r} \left(\frac{-1}{3}\right)^{r}$$

$$= \binom{9}{r} (3)^{9-r} \left(\frac{-1}{3}\right)^{r} (x)^{18-3r}$$

To get coefficient of x6 we must have,

$$(x)^{18-3r} = x^6$$

•
$$18 - 3r = 6$$

•
$$3r = 12$$

Therefore, coefficient of $x^6 = \binom{9}{4} (3)^{9-4} \left(\frac{-1}{2}\right)^4$

$$=\frac{9\times8\times7\times6}{4\times3\times2\times1}.(3)^5\left(\frac{1}{3}\right)^4$$

(iii) Here,
$$a=3x^2$$
, $b=\frac{-a}{3x^2}$ and $n=10$

We have a formula,

$$\mathsf{t}_{r+1} = \binom{n}{r} \ \mathsf{a}^{n-r} \ \mathsf{b}^r$$

$$=\binom{10}{r}(3x^2)^{10-r}\left(\frac{-a}{3x^3}\right)^r$$

$$= {10 \choose r} (3)^{10-r} (x^2)^{10-r} \left(\frac{-a}{3}\right)^r (x)^{-3r}$$

$$= {10 \choose r} (3)^{10-r} (x)^{20-2r} (\frac{-a}{3})^r (x)^{-3r}$$

$$= {10 \choose r} (3)^{10-r} (x)^{20-2r-3r} \left(\frac{-a}{3}\right)^{r}$$

$$=\binom{10}{r}(3)^{10-r}(\frac{-a}{3})^{r}(x)^{20-5r}$$

To get coefficient of x-15 we must have,

$$(x)^{20-5r} = x^{-15}$$

•
$$20 - 5r = -15$$

•
$$5r = 35$$

•
$$r = 7$$

Therefore, coefficient of $x^{-15} = \binom{10}{7} (3)^{10-7} \left(\frac{-a}{3}\right)^7$

But
$$\binom{10}{7} = \binom{10}{3}$$
 $\left[\because \binom{n}{r} = \binom{n}{n-r} \right]$

Therefore, qthe coefficient of $x^{-15} = \frac{10 \times 9 \times 8}{3 \times 2 \times 1} \cdot (3)^3 \left(\frac{-a}{3}\right)^7$

$$= 120 \cdot (-a)^7 \left(\frac{1}{3}\right)^4$$

$$= (-a)^7 \frac{120}{3^4}$$

$$= (-a)^7 \frac{40}{27}$$

(iv) Here, a=a, b=-2b and n=12

We have formula,

$$t_{r+1} = \binom{n}{r} a^{n-r} b^r$$

$$=\binom{12}{r}(a)^{12-r}(-2b)^r$$

$$=\binom{12}{r}(-2)^r(a)^{12-r}(b)^r$$

To get coefficient of a⁷b⁵ we must have,

$$(a)^{12-r}(b)^r = a^7b^5$$

Therefore, coefficient of $a^7b^5 = \binom{12}{5}(-2)^5$

$$= \frac{12 \times 11 \times 10 \times 9 \times 8}{5 \times 4 \times 3 \times 2 \times 1}.(-32)$$

Question: 31

Solution:

For
$$\left(3x - \frac{1}{2x}\right)^8$$
,

$$a=3x$$
, $b = \frac{-1}{2x}$ and $n=8$

We have a formula,

$$t_{r+1} = \binom{n}{r} a^{n-r} b^r$$

$$= {8 \choose r} (3x)^{9-r} \left(\frac{-1}{2x}\right)^r$$

$$= {8 \choose r} (3)^{8-r} (x)^{8-r} \left(\frac{-1}{2}\right)^r (x)^{-r}$$

$$=\binom{8}{r}(3)^{8-r}(x)^{8-r-r}(\frac{-1}{2})^{r}$$

$$=\binom{8}{r}(3)^{8-r}(\frac{-1}{2})^{r}(x)^{8-2r}$$

To get coefficient of x3 we must have,

$$(x)^{8-2r} = (x)^3$$

•
$$8 - 2r = 3$$

• r = 2 5

As
$$\binom{8}{r} = \binom{8}{25}$$
 is not possible

Therefore, the term containing x^3 does not exist in the expansion of $\left(3x - \frac{1}{2x}\right)^8$

Question: 32

Solution:

For
$$(2x^2 - \frac{1}{x})^{20}$$
,

$$a=2x^2$$
, $b=\frac{-1}{x}$ and $n=20$

We have a formula,

$$t_{r+1} = \binom{n}{r} \ a^{n-r} \ b^r$$

$$=\binom{20}{r}(3x^2)^{20-r}\left(\frac{-1}{x}\right)^r$$

$$= {20 \choose r} (3)^{20-r} (x^2)^{20-r} (-1)^r (x)^{-r}$$

$$= {20 \choose r} (3)^{20-r} (x)^{40-2r} (-1)^r (x)^{-r}$$

$$= {20 \choose r} (3)^{20-r} (x)^{40-2r-r} (-1)^{r}$$

$$= {20 \choose r} (3)^{20-r} (-1)^r (x)^{40-3r}$$

To get coefficient of x9 we must have,

$$(x)^{40-3r} = (x)^9$$

•
$$40 - 3r = 9$$

•
$$3r = 31$$

•
$$r = 10.3333$$

As
$$\binom{20}{r} = \binom{20}{10.3333}$$
 is not possible

Therefore, the term containing x^9 does not exist in the expansion of $\left(2x^2 - \frac{1}{x}\right)^{20}$

Question: 33

Solution:

For
$$(x^2 + \frac{1}{x^2})^{12}$$
,

$$a=x^2$$
, $b = \frac{1}{x}$ and $n=12$

We have a formula,

$$t_{r+1} = \binom{n}{r} a^{n-r} b^r$$

$$=\binom{12}{r}(x^2)^{12-r}(\frac{1}{x})^r$$

$$=\binom{12}{r}(x)^{24-2r}(x)^{-r}$$

$$=\binom{12}{r}(x)^{24-2r-r}$$

$$=\binom{12}{r}(x)^{24-3r}$$

To get coefficient of x⁻¹ we must have,

$$(x)^{24-3r} = (x)^{-1}$$

•
$$24 - 3r = -1$$

•
$$3r = 25$$

•
$$r = 8.3333$$

As
$$\binom{20}{r} = \binom{20}{8.3333}$$
 is not possible

Therefore, the term containing x^{-1} does not exist in the expansion of $\left(x^2 + \frac{1}{v}\right)^{12}$

Question: 34

Solution:

To Find: General term, i.e. t_{r+1}

For (x2 - y)6

 $a=x^2$, b=-y and n=6

General term t_{r+1} is given by,

$$t_{r+1} = \binom{n}{r} a^{n-r} b^r$$

$$=\binom{6}{r}(x^2)^{6-r}(-y)^r$$

<u>Conclusion</u>: General term = $\binom{6}{r} (x^2)^{6-r} (-y)^r$

Question: 35

Solution:

To Find: 5th term from the end

Formulae:

•
$$t_{r+1} = \binom{n}{r} a^{n-r} b^r$$

$$\bullet \binom{n}{r} = \binom{n}{n-r}$$

For
$$\left(x-\frac{1}{x}\right)^{12}$$
,

$$a=x$$
, $b = \frac{-1}{x}$ and $n=12$

As n=12, therefore there will be total (12+1)=13 terms in the expansion

 5^{th} term from the end = $(13-5+1)^{th}$ i.e. 9^{th} term from the starting.

We have a formula,

$$t_{r+1} = \binom{n}{r} \ a^{n-r} \ b^r$$

For t_9 , r=8

$$t_9 = t_{8+1}$$

$$=\binom{12}{8}(x)^{12-8}\left(\frac{-1}{x}\right)^8$$

$$= \binom{12}{4} (X)^4 (X)^{-8} \dots \left[\because \binom{n}{n} = \binom{n}{n} \right]$$

$$= \frac{12 \times 11 \times 10 \times 9}{4 \times 3 \times 2 \times 1} (x)^{4-8}$$

$$=495(x)^{-4}$$

Therefore, a 5^{th} term from the end = $495 (x)^{-4}$

Conclusion: 5^{th} term from the end = $495(x)^{-4}$

Question: 36

Solution:

To Find: 4th term from the end

Formulae:

•
$$t_{r+1} = \binom{n}{r} a^{n-r} b^r$$

$$\bullet \binom{n}{r} = \binom{n}{n-r}$$

For
$$\left(\frac{4x}{5} - \frac{5}{2x}\right)^9$$
,

$$a = \frac{4x}{5}$$
, $b = \frac{-5}{2}$ and $n=9$

As n=9, therefore there will be total (9+1)=10 terms in the expansion

Therefore,

 4^{th} term from the end = $(10-4+1)^{th}$, i.e. 7^{th} term from the starting.

We have a formula,

$$t_{r+1} = \binom{n}{r} a^{n-r} b^r$$

For t_7 , r=6

$$t_7 = t_{6+1}$$

$$= {10 \choose 6} \left(\frac{4x}{5}\right)^{10-6} \left(\frac{-5}{2x}\right)^6$$

$$= \binom{10}{4} \left(\frac{4x}{5}\right)^4 \left(\frac{-5}{2x}\right)^6 \dots \left[\because \binom{n}{r} = \binom{n}{n-r}\right]$$

$$= {10 \choose 4} \frac{(4)^4}{(5)^4} (x)^4 \frac{(-5)^6}{(2)^6} (x)^{-6}$$

$$= \frac{10 \times 9 \times 8 \times 7}{4 \times 3 \times 2 \times 1} (100) (x)^{-2}$$

 $= 21000 (x)^{-2}$

Therefore, a 4th term from the end = $21000 (x)^{-2}$

Conclusion: 4^{th} term from the end = 21000 (x)⁻²

Question: 37

Solution:

To Find:

I. 4th term from the beginning

II. 4th term from the end

Formulae:

•
$$t_{r+1} = \binom{n}{r} a^{n-r} b^r$$

$$\bullet \binom{n}{r} = \binom{n}{n-r}$$

For
$$\left(\sqrt[3]{2} + \frac{1}{\sqrt[3]{3}}\right)^n$$
,

$$a = \sqrt[3]{2}$$
, $b = \frac{1}{\sqrt[3]{3}}$ and $n=9$

As n=n, therefore there will be total (n+1) terms in the expansion

Therefore,

I. For the 4th term from the starting.

We have a formula,

$$t_{r+1} = \binom{n}{r} a^{n-r} b^r$$

For t_4 , r=3

$$... t_4 = t_{3+1}$$

$$= \binom{n}{3} \left(\sqrt[3]{2}\right)^{n-3} \left(\frac{1}{\sqrt[3]{3}}\right)^3$$

$$=\binom{n}{3}(2)^{\frac{n-3}{3}}\frac{1}{3}$$

$$= \binom{n}{3} \cdot \frac{(2)^{\frac{n-3}{3}}}{3}$$

$$=\frac{n!}{(n-3)!\times 3!}\cdot\frac{(2)^{\frac{n-3}{3}}}{3}$$

Therefore, a 4th term from the starting $=\frac{n!}{(n-3)!\times 3!}\cdot\frac{(2)^{\frac{n-2}{2}}}{3}$

Now,

II. For the 4th term from the end

We have a formula,

$$t_{r+1} = \binom{n}{r} a^{n-r} b^r$$

For $t_{\{n-2\}}$, r = (n-2)-1 = (n-3)

$$t_{(n-2)} = t_{(n-3)+1}$$

$$= \binom{n}{n-3} \left(\sqrt[3]{2}\right)^{n-(n-3)} \left(\frac{1}{\sqrt[3]{3}}\right)^{(n-3)}$$

$$= \binom{n}{3} \left(\sqrt[3]{2} \right)^3 \left(3 \right)^{\frac{-(n-2)}{2}} \cdots \cdots \left[\because \binom{n}{r} = \binom{n}{n-r} \right]$$

$$=\binom{n}{4}(2)(3)^{\frac{3-n}{3}}$$

$$= \frac{n!}{(n-4)! \times 4!} (2) (3)^{\frac{3-n}{3}}$$

Therefore, a 4th term from the end = $\frac{n!}{(n-4)! \times 4!}$ (2) (3) $\frac{a-n}{a}$

Conclusion:

I. 4th term from the beginning $=\frac{n!}{(n-3)!\times 3!}\cdot\frac{(2)^{\frac{n-3}{2}}}{3}$

II. 4th term from the end =
$$\frac{n!}{(n-4)! \times 4!} (2) (3)^{\frac{3-n}{a}}$$

Question: 38

Solution:

(i) For
$$(3 + x)^6$$
,

$$a=3$$
, $b=x$ and $n=6$

As n is even, $\left(\frac{n+2}{2}\right)^{th}$ is the middle term

Therefore, the middle term $=\left(\frac{6+2}{2}\right)^{\text{th}} = \left(\frac{8}{2}\right)^{\text{th}} = (4)^{\text{th}}$

General term t_{r+1} is given by,

$$t_{r+1} = \binom{n}{r} a^{n-r} b^r$$

Therefore, for 4^{th} , r=3

$$t_4 = t_{3+1}$$

$$=\binom{6}{3}(3)^{6-3}(x)^3$$

$$=\frac{6\times5\times4}{3\times2\times1}$$
. (3)³ (x)³

$$= (20). (27) x^3$$

$$= 540 x^3$$

(ii)
$$\operatorname{For}\left(\frac{x}{3} + 3y\right)^{8}$$
,

$$a = \frac{x}{2}$$
, b=3y and n=8

As n is even, $\left(\frac{n+2}{2}\right)^{th}$ is the middle term

Therefore, the middle term = $\left(\frac{8+2}{2}\right)^{\text{th}} = \left(\frac{10}{2}\right)^{\text{th}} = (5)^{\text{th}}$

General term t_{r+1} is given by,

$$t_{r+1} = \binom{n}{r} a^{n-r} b^r$$

Therefore, for 5^{th} , r=4

Therefore, the middle term is

$$t_5 = t_{4+1}$$

$$=\binom{8}{4}\left(\frac{x}{3}\right)^{8-4}(3y)^4$$

$$=\binom{8}{4}\left(\frac{x}{3}\right)^4(3)^4(y)^4$$

$$=\binom{8}{4}\frac{(x)^4}{(3)^4}(3)^4(y)^4$$

$$= \frac{8 \times 7 \times 6 \times 5}{4 \times 3 \times 2 \times 1} \cdot (x)^4 (y)^4$$

$$= (70). x^4 y^4$$

(iii) For
$$\left(\frac{x}{a} - \frac{a}{y}\right)^{10}$$
,

$$a = \frac{x}{a}$$
, $b = \frac{-a}{x}$ and $n=10$

As n is even, $\left(\frac{n+2}{2}\right)^{th}$ is the middle term

Therefore, the middle term = $\left(\frac{10+2}{2}\right)^{th} = \left(\frac{12}{2}\right)^{th} = (6)^{th}$

General term t_{r+1} is given by,

$$t_{r+1} = \binom{n}{r} a^{n-r} b^r$$

Therefore, for 6th, r=5

$$t_6 = t_{5+1}$$

$$= {10 \choose 5} \left(\frac{x}{a}\right)^{10-5} \left(\frac{-a}{x}\right)^5$$

$$= {10 \choose 5} {\left(\frac{x}{a}\right)}^5 (-a)^5 {\left(\frac{1}{x}\right)}^5$$

$$= {10 \choose 5} \frac{(x)^5}{(a)^5} (-a)^5 \left(\frac{1}{x}\right)^5$$

$$= \frac{10 \times 9 \times 8 \times 7 \times 6}{5 \times 4 \times 3 \times 2 \times 1}.(-1)$$

(iv) For
$$(x^2 - \frac{2}{x})^{10}$$
,

$$a=x^2$$
, $b = \frac{-2}{x}$ and $n=10$

As n is even, $\left(\frac{n+2}{2}\right)^{th}$ is the middle term

Therefore, the middle term $=\left(\frac{10+2}{2}\right)^{th} = \left(\frac{12}{2}\right)^{th} = (6)^{th}$

General term t_{r+1} is given by,

$$t_{r+1} = \binom{n}{r} \ a^{n-r} \ b^r$$

Therefore, for the 6th middle term, r=5

Therefore, the middle term is

$$t_6 = t_{5+1}$$

$$=\binom{10}{5}(x^2)^{10-5}\left(\frac{-2}{x}\right)^5$$

$$=\binom{10}{5}(x^2)^5(-2)^5\left(\frac{1}{x}\right)^5$$

$$=\binom{10}{5}\frac{(x)^{10}}{(x)^5}(-32)$$

$$= \frac{10 \times 9 \times 8 \times 7 \times 6}{5 \times 4 \times 3 \times 2 \times 1} \cdot (-32) (x)^{5}$$

$$= -8064 x^5$$

Question: 39 A

Solution:

For
$$(x^2 + a^2)^5$$
,

$$a = x^2$$
, $b = a^2$ and $n = 5$

As n is odd, there are two middle terms i.e.

$$L\left(\frac{n+1}{2}\right)^{th}$$
 and $H\left(\frac{n+3}{2}\right)^{th}$

General term t_{r+1} is given by,

$$t_{r+1} = \binom{n}{r} a^{n-r} b^r$$

I. The first, middle term is
$$\left(\frac{n+1}{2}\right)^{th}=\left(\frac{5+1}{2}\right)^{th}=\left(\frac{6}{2}\right)^{th}=(3)^{rd}$$

Therefore, for the 3rd middle term, r=2

$$t_3 = t_{2+1}$$

$$=\binom{5}{2}(x^2)^{5-2}(a^2)^2$$

$$=\binom{5}{2}(x^2)^3(a)^4$$

$$=\binom{5}{2}(x)^6(a)^4$$

$$=\frac{5\times4}{2\times1}$$
. $(x)^6(a)^4$

$$= 10. a^4. x^6$$

II. The second middle term is
$$\left(\frac{n+3}{2}\right)^{th} = \left(\frac{5+3}{2}\right)^{th} = \left(\frac{8}{2}\right)^{th} = (4)^{th}$$

Therefore, for the 4th middle term, r=3

Therefore, the second middle term is

$$t_4 = t_{3+1}$$

$$=\binom{5}{3}(x^2)^{5-3}(a^2)^3$$

$$=\binom{5}{3}(x^2)^2(a)^6$$

$$= \binom{5}{2} (x)^4 (a)^6 \dots \left[\because \binom{n}{r} = \binom{n}{n-r} \right]$$

$$=\frac{5\times4}{2\times1}$$
. $(x)^4(a)^6$

$$= 10. a^6. x^4$$

Question: 39 B

Solution:

For
$$\left(x^4 - \frac{1}{x^3}\right)^{11}$$
,

$$a = x^4$$
, $b = \frac{-1}{x^3}$ and $n = 11$

As n is odd, there are two middle terms i.e.

II.
$$\left(\frac{n+1}{2}\right)^{th}$$
 and II. $\left(\frac{n+3}{2}\right)^{th}$

General term t_{r+1} is given by,

$$t_{r+1} = \binom{n}{r} \ a^{n-r} \ b^r$$

I. The first middle term is
$$\left(\frac{n+1}{2}\right)^{th} = \left(\frac{11+1}{2}\right)^{th} = \left(\frac{12}{2}\right)^{th} = (6)^{th}$$

Therefore, for the 6th middle term, r=5

$$t_6 = t_{5+1}$$

$$= {11 \choose 5} (x^4)^{11-5} \left(\frac{-1}{x^3}\right)^5$$

$$= {11 \choose 5} (x^4)^6 (-1)^5 \left(\frac{1}{x^3}\right)^5$$

$$=\binom{11}{5}(x)^{24}(-1)\frac{1}{x^{15}}$$

$$=\frac{11\times10\times9\times8\times7}{5\times4\times3\times2\times1}.(x)^{9}(-1)$$

$$= -462. x^9$$

II. The second middle term is
$$\left(\frac{n+3}{2}\right)^{th} = \left(\frac{11+3}{2}\right)^{th} = \left(\frac{14}{2}\right)^{th} = (7)^{th}$$

Therefore, for the 7th middle term, r=6

Therefore, the second middle term is

$$t_7 = t_{6+1}$$

$$= \binom{11}{6} (x^4)^{11-6} \left(\frac{-1}{x^3}\right)^6$$

$$= \binom{11}{5} (x^4)^5 (-1)^6 \left(\frac{1}{x^3}\right)^6 \dots \left[\because \binom{n}{r} = \binom{n}{n-r}\right]$$

$$=\binom{11}{5}(x)^{20}(1)\frac{1}{x^{18}}$$

$$= \frac{11 \times 10 \times 9 \times 8 \times 7}{5 \times 4 \times 3 \times 2 \times 1} \cdot (x)^{2}$$

$$= 462. x^2$$

Question: 39 C

Solution:

For
$$\left(\frac{p}{x} + \frac{x}{n}\right)^9$$
,

$$a = \frac{p}{r}$$
, $b = \frac{x}{p}$ and $n=9$

As n is odd, there are two middle terms i.e.

$$L\left(\frac{n+1}{2}\right)^{th}$$
 and $L\left(\frac{n+3}{2}\right)^{th}$

General term t_{r+1} is given by,

$$t_{r+1} = \binom{n}{r} a^{n-r} b^r$$

I. The first middle term is
$$\left(\frac{n+1}{2}\right)^{th} = \left(\frac{9+1}{2}\right)^{th} = \left(\frac{10}{2}\right)^{th} = (5)^{th}$$

Therefore, for 5th middle term, r=4

$$t_5 = t_{4+1}$$

$$=\binom{9}{4}\left(\frac{p}{x}\right)^{9-4}\left(\frac{x}{p}\right)^4$$

$$= \binom{9}{4} \left(\frac{p}{x}\right)^5 (x)^4 \left(\frac{1}{p}\right)^4$$

$$=\binom{9}{4}\left(\frac{p}{x}\right)$$

$$= \frac{9 \times 8 \times 7 \times 6}{4 \times 3 \times 2 \times 1} \cdot (p) \cdot (x)^{-1}$$

$$= 126$$
p. x^{-1}

II. The second middle term is $\left(\frac{n+3}{2}\right)^{th} = \left(\frac{9+3}{2}\right)^{th} = \left(\frac{12}{2}\right)^{th} = (6)^{th}$

Therefore, for the 6th middle term, r=5

Therefore, the second middle term is

$$t_6 = t_{5+1}$$

$$=\binom{9}{5}\left(\frac{p}{x}\right)^{9-5}\left(\frac{x}{p}\right)^5$$

$$= \binom{9}{4} \left(\frac{p}{x}\right)^4 (x)^5 \left(\frac{1}{p}\right)^5 \ \dots \dots \left[\because \ \binom{n}{r} = \binom{n}{n-r}\right]$$

$$=\binom{9}{4}\binom{x}{p}$$

$$=\frac{9\times8\times7\times6}{4\times3\times2\times1}.\left(\frac{1}{p}\right).(x)$$

$$=126\left(\frac{1}{p}\right).(x)$$

Question: 39 D

Solution:

For
$$\left(3x - \frac{x^2}{3}\right)^9$$
,

$$a=3x$$
, $b = \frac{-x^2}{6}$ and $n=9$

As n is odd, there are two middle terms i.e.

I.
$$\left(\frac{n+1}{2}\right)^{th}$$
 and II. $\left(\frac{n+3}{2}\right)^{th}$

General term t_{r+1} is given by,

$$t_{r+1} = \binom{n}{r} a^{n-r} b^r$$

I. The first middle term is
$$\left(\frac{n+1}{2}\right)^{th} = \left(\frac{9+1}{2}\right)^{th} = \left(\frac{10}{2}\right)^{th} = (5)^{th}$$

Therefore, for 5th middle term, r=4

$$t_5 = t_{4+1}$$

$$= \binom{9}{4} (3x)^{9-4} \left(\frac{-x^3}{6}\right)^4$$

$$= \binom{9}{4} (3x)^5 (x^3)^4 \left(\frac{1}{6}\right)^4$$

$$=\binom{9}{4}(3)^5(x)^5(x)^{12}\left(\frac{1}{6}\right)^4$$

$$= \frac{9 \times 8 \times 7 \times 6}{4 \times 3 \times 2 \times 1} \cdot \frac{243}{1296} (x)^{17}$$

$$=\frac{189}{8}(x)^{17}$$

II. The second middle term is $\left(\frac{n+3}{2}\right)^{th}=\left(\frac{9+3}{2}\right)^{th}=\left(\frac{12}{2}\right)^{th}=\left(6\right)^{th}$

Therefore, for the 6th middle term, r=5

Therefore, the second middle term is

$$t_6 = t_{5+1}$$

$$=\binom{9}{5}(3x)^{9-5}\left(\frac{-x^3}{6}\right)^5$$

$$= \binom{9}{4} (3x)^4 (-x^3)^5 \left(\frac{1}{6}\right)^5 \dots \left[\because \binom{n}{r} = \binom{n}{n-r}\right]$$

$$= \binom{9}{4} (3)^4 (x)^4 (-x)^{15} \left(\frac{1}{6}\right)^5$$

$$= \frac{9 \times 8 \times 7 \times 6}{4 \times 3 \times 2 \times 1} \cdot \frac{81}{7776} (-x)^{19}$$

$$=-\frac{21}{16}(x)^{19}$$

Question: 40 A

Solution:

To Find: term independent of x, i.e. xº

For
$$\left(2x + \frac{1}{3x^2}\right)^9$$

$$a=2x$$
, $b = \frac{1}{3x^2}$ and $n=9$

We have a formula,

$$t_{r+1} = \binom{n}{r} a^{n-r} b^r$$

$$=\binom{9}{r} (2x)^{9-r} \left(\frac{1}{3x^2}\right)^r$$

$$= \binom{9}{r} (x)^{9-r} (2)^{9-r} \left(\frac{1}{3}\right)^{r} \left(\frac{1}{x^{2}}\right)^{r}$$

$$= \binom{9}{r} (x)^{9-r} \frac{(2)^{9-r}}{(3)^r} (x)^{-2r}$$

$$=\binom{9}{r}\frac{(2)^{9-r}}{(3)^r}(x)^{9-r-2r}$$

$$= \binom{9}{r} \frac{(2)^{9-r}}{(3)^r} (x)^{9-3r}$$

Now, to get coefficient of term independent of xthat is coefficient of xo we must have,

$$(x)^{9-3r} = x^0$$

•
$$9 - 3r = 0$$

 \bullet r = 3

Therefore, coefficient of $x^0 = \binom{9}{3} \frac{(2)^{9-3}}{(3)^3}$

$$=\frac{9\times8\times7}{3\times2\times1}\frac{(2)^6}{(3)^3}$$

$$=\frac{1792}{3}$$

Conclusion: coefficient of $x^0 = \frac{1792}{3}$

Question: 40 B

Solution:

To Find: term independent of x, i.e. xº

$$For \left(\frac{3x^2}{2} - \frac{1}{3x}\right)^6$$

$$a = \frac{3x^2}{2}$$
, $b = -\frac{1}{3x}$ and $n=6$

We have a formula,

$$t_{r+1} = \binom{n}{r} a^{n-r} b^r$$

$$= \binom{6}{r} \left(\frac{3x^2}{2}\right)^{6-r} \left(-\frac{1}{3x}\right)^r$$

$$= \binom{6}{r} \left(\frac{3}{2}\right)^{6-r} (x^2)^{6-r} \left(\frac{-1}{3}\right)^r \left(\frac{1}{x}\right)^r$$

$$= {6 \choose r} {3 \choose 2}^{6-r} {-1 \choose 3}^r (x)^{12-2r} (x)^{-r}$$

$$= {6 \choose r} \left(\frac{3}{2}\right)^{6-r} \left(\frac{-1}{3}\right)^r (x)^{12-2r-r}$$

$$=\binom{6}{r}\left(\frac{3}{2}\right)^{6-r}\left(\frac{-1}{3}\right)^{r}(x)^{12-3r}$$

Now, to get coefficient of term independent of xthat is coefficient of x^0 we must have,

$$(x)^{12-3r} = x^0$$

•
$$12 - 3r = 0$$

•
$$3r = 12$$

•
$$r = 4$$

Therefore, coefficient of $x^0 = \binom{6}{4} \left(\frac{3}{2}\right)^{6-4} \left(\frac{-1}{3}\right)^4$

$$= {6 \choose 2} \left(\frac{3}{2}\right)^2 \frac{1}{81} \dots \left[\because {n \choose r} = {n \choose n-r} \right]$$

$$=\frac{6 \times 5}{2 \times 1} \cdot \frac{9}{4} \cdot \frac{1}{81}$$

$$=\frac{15}{36}$$

Question: 40 C

Solution:

To Find: term independent of x, i.e. xº

$$For\left(X - \frac{1}{x^2}\right)^{3n}$$

$$a=x$$
, $b = -\frac{1}{x^2}$ and $N=3n$

We have a formula,

$$t_{r+1} = \binom{N}{r} \ a^{N-r} \ b^r$$

$$=$$
 $\binom{3n}{r}(x)^{3n-r}\left(-\frac{1}{x^2}\right)^r$

$$= {3n \choose r} (x)^{3n-r} (-1)^r \left(\frac{1}{x^2}\right)^r$$

$$= \binom{3n}{r} (x)^{3n-r} (-1)^r (x)^{-2r}$$

$$= {3n \choose r} (-1)^r (x)^{3n-r-2r}$$

$$=\binom{3n}{r}(-1)^r(x)^{3n-3r}$$

Now, to get coefficient of term independent of xthat is coefficient of x0 we must have,

$$(\mathbf{x})^{3n-3r} = \mathbf{x}^0$$

•
$$3n - 3r = 0$$

Therefore, coefficient of $x^0 = \binom{3n}{n} (-1)^n$

Conclusion: coefficient of $x^0 = {3n \choose n} (-1)^n$

Question: 40 D

Solution:

To Find: term independent of x, i.e. xº

For
$$\left(3x - \frac{2}{x^2}\right)^{15}$$

$$a=3x$$
, $b = \frac{-2}{x^2}$ and $n=15$

We have a formula,

$$t_{r+1} = \binom{n}{r} \; a^{n-r} \; b^r$$

$$=\binom{15}{r} (3x)^{15-r} \left(\frac{-2}{x^2}\right)^r$$

$$= {15 \choose r} (3)^{15-r} (x)^{15-r} (-2)^r \left(\frac{1}{x^2}\right)^r$$

$$= \binom{15}{r} (3)^{15-r} (x)^{15-r} (-2)^r (x)^{-2r}$$

$$= {15 \choose r} (3)^{15-r} (-2)^r (x)^{15-r-2r}$$

$$= {15 \choose r} (3)^{15-r} (-2)^r (x)^{15-3r}$$

Now, to get coefficient of term independent of xthat is coefficient of x0 we must have,

$$(x)^{15-3r} = x^0$$

•
$$15 - 3r = 0$$

•
$$3r = 15$$

Therefore, coefficient of $x^0 = \binom{15}{5} (3)^{15-5} (-2)^5$

$$=\frac{15\times14\times13\times12\times11}{5\times4\times3\times2\times1}.(3)^{10}.(-32)$$

$$=-3003.(3)^{10}.(32)$$

Conclusion: coefficient of $x^0 = -3003.(3)^{10}.(32)$

Question: 41

Solution:

To Find: coefficient of x5

For (1+x)3

a=1, b=x and n=3

We have a formula,

$$(1+x)^3 = \sum_{r=0}^{3} {3 \choose r} (1)^{3-r} x^r$$

$$= \binom{3}{0} (1)^3 x^0 + \binom{3}{1} (1)^2 x^1 + \binom{3}{2} (1)^1 x^2 + \binom{3}{3} (1)^0 x^3$$

$$= 1 + 3x + 3x^2 + x^3$$

For (1-x)6

a=1, b=-x and n=6

We have formula,

$$(1-x)^6 = \sum_{r=0}^6 {6 \choose r} (1)^{6-r} (-x)^r$$

$$= \binom{6}{0} (1)^{6} (-x)^{0} + \binom{6}{1} (1)^{5} (-x)^{1} + \binom{6}{2} (1)^{4} (-x)^{2} + \binom{6}{3} (1)^{3} (-x)^{3}$$

$$+ \binom{6}{4} (1)^{2} (-x)^{4} + \binom{6}{5} (1)^{1} (-x)^{5} + \binom{6}{6} (1)^{0} (-x)^{6}$$

We have a formula,

$$\binom{n}{r} = \frac{n!}{(n-r)! \times r!}$$

CLASS24

By using this formula, we get,×

$$(1-x)^6 = 1 - 6x + 15x^2 - 20x^3 + 15x^4 - 6x^5 + x^6$$

$$(1+x)^3(1-x)^6$$

=
$$(1 + 3x + 3x^2 + x^3)(1 - 6x + 15x^2 - 20x^3 + 15x^4 - 6x^5 + x^6)$$

Coefficients of x5 are

$$x^0.x^5 = 1 \times (-6) = -6$$

$$x^{1}.x^{4} = 3 \times 15 = 45$$

$$x^2.x^3 = 3 \times (-20) = -60$$

$$x^3.x^2 = 1 \times 15 = 15$$

Therefore, Coefficients of $x^5 = -6+45-60+15 = -6$

Conclusion: Coefficients of $x^5 = -6$

Question: 42

Solution:

To Find: numerically greatest term

$$a=2$$
, $b=3x$ and $n=9$

We have relation,

$$t_{r+1} \ge t_r \text{ or } \frac{t_{r+1}}{t_r} \ge 1$$

we have a formula,

$$\mathsf{t}_{r+1} = \binom{n}{r} \; a^{n-r} \; b^r$$

$$=\binom{9}{r} 2^{9-r} (3x)^r$$

$$= \frac{9!}{(9-r)! \times r!} \ 2^{9-r} (3)^{r} (x)^{r}$$

$$\cdot t_r = \binom{n}{r-1} \ a^{n-r+1} \ b^{r-1}$$

$$= \binom{9}{r-1} \ 2^{9-r+1} \ (3x)^{r-1}$$

$$= \frac{9!}{(9-r+1)! \times (r-1)!} \ 2^{10-r} \ (3)^{r-1} (x)^{r-1}$$

$$= \frac{9!}{(10-r)! \times (r-1)!} \ 2^{10-r} (3)^{r-1} (x)^{r-1}$$

$$\therefore \frac{\mathsf{t}_{r+1}}{\mathsf{t}_{r}} \geq 1$$

$$\label{eq:conditional_equation} \begin{split} & \therefore \frac{\frac{9!}{(9-r)! \times r!} \ 2^{9-r} \, (3)^r (x)^r}{\frac{9!}{(10-r)! \times (r-1)!} \ 2^{10-r} \, (3)^{r-1} (x)^{r-1}} \geq 1 \end{split}$$

$$\div \frac{9!}{(9-r)! \times r!} \ 2^{9-r} \ (3)^r (x)^r \geq \frac{9!}{(10-r)! \times (r-1)!} \ 2^{10-r} \ (3)^{r-1} (x)^{r-1}$$

$$\therefore \frac{9!}{(9-r)! \times r(r-1)!} 2^{9-r} (3)(3)^{r-1} (x)(x)^{r-1} \\
\ge \frac{9!}{(10-r)(9-r)! \times (r-1)!} (2)2^{9-r} (3)^{r-1} (x)^{r-1}$$

$$\therefore \frac{1}{r} (3)(x) \ge \frac{1}{(10-r)} (2)$$

At
$$x = 3/2$$

$$\therefore \frac{9}{4} \ge \frac{r}{(10-r)}$$

$$\therefore 9(10-r) \ge 4r$$

$$\therefore 90 - 9r \ge 4r$$

therefore, r=6 and hence the 7th term is numerically greater.

By using formula,

$$t_{r+1} = \binom{n}{r} \ a^{n-r} \ b^r$$

$$t_7 = \binom{9}{7} 2^{9-7} (3x)^7$$

$$=\binom{9}{2} 2^2 (3)^7 (x)^7$$

 $\underline{Conclusion}: the \ 7^{th} \ term \ is \ numerically \ greater \ with \ value \left({9\atop 2} \right) 2^2 \ (3)^7 \ (x)^7$

Question: 43

Solution:

For
$$(1 + x)^{2n}$$

We have,
$$t_{r+1} = \binom{N}{r} a^{N-r} b^r$$

For the 2nd term, r=1

$$: t_2 = t_{1+1}$$

$$=\binom{2n}{1}(1)^{2n-1}(x)^{1}$$

$$= (2n) \times \cdots \left[\because \binom{n}{1} = n \right]$$

For the 3^{rd} term, r=2

Therefore, the coefficient of 3^{rd} term = (n)(2n-1)

For the 4^{th} term, r=3

$$\begin{split} & :: t_4 = t_{3+1} \\ & = \binom{2n}{3} (1)^{2n-3} (x)^3 \\ & = \frac{(2n)!}{(2n-3)! \times 3!} x^3 \\ & = \frac{\frac{(2n)(2n-1)(2n-2)(2n-3)!}{(2n-3)! \times 6} x^3 \dots (n! = n. (n-1)!)}{3} \\ & = \frac{(n)(2n-1).2(n-1)}{3} x^3 \end{split}$$

Therefore, the coefficient of 3^{rd} term = $\frac{2(n)(2n-1).(n-1)}{3}$

As the coefficients of 2nd, 3rd and 4th terms are in A.P.

Therefore,

2×coefficient of 3rd term = coefficient of 2nd term + coefficient of the 4th term

$$\therefore 2 \times (n)(2n-1) = (2n) + \frac{2(n)(2n-1).(n-1)}{3}$$

Dividing throughout by (2n),

$$\therefore 2n - 1 = 1 + \frac{(2n-1)(n-1)}{3}$$

$$\therefore 2n - 1 = \frac{3 + (2n - 1)(n - 1)}{3}$$

•
$$3(2n-1) = 3 + (2n-1)(n-1)$$

•
$$6n - 3 = 3 + (2n^2 - 2n - n + 1)$$

•
$$6n - 3 = 3 + 2n^2 - 3n + 1$$

•
$$3 + 2n^2 - 3n + 1 - 6n + 3 = 0$$

$$2n^2 - 9n + 7 = 0$$

Conclusion: If the coefficients of 2^{nd} , 3^{rd} and 4^{th} terms of $(1+x)^{2n}$ are in A.P. then $2n^2 - 9n + 7 = 0$

Solution:

Given: 3rd term from the end =45

To Find: 6th term

For $(y^{1/2} + x^{1/3})^n$,

$$a = y^{1/2}$$
, $b = x^{1/3}$

We have,
$$t_{r+1} = \binom{n}{r} a^{n-r} b^r$$

As n=n, therefore there will be total (n+1) terms in the expansion.

 3^{rd} term from the end = $(n+1-3+1)^{th}$ i.e. $(n-1)^{th}$ term from the starting

For $(n-1)^{th}$ term, r = (n-1-1) = (n-2)

$$t_{(n-1)} = t_{(n-2)+1}$$

$$= \binom{n}{n-2} \left(y^{\frac{1}{2}}\right)^{n-(n-2)} \left(x^{\frac{1}{3}}\right)^{(n-2)}$$

$$= \binom{n}{2} \left(y^{\frac{1}{2}}\right)^2 \left(x\right)^{\frac{n-2}{2}} \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \binom{n}{n-r} = \binom{n}{r}$$

$$=\frac{n(n-1)}{2}(y)(x)^{\frac{n-2}{3}}$$

Therefore 3^{rd} term from the end = $\frac{n(n-1)}{2}$ (y) (x) $\frac{n-2}{3}$

Therefore coefficient 3^{rd} term from the end $=\frac{n(n-1)}{2}$

$$\therefore 45 = \frac{n(n-1)}{2}$$

•
$$90 = n (n-1)$$

Comparing both sides, n=10

For 6th term, r=5

$$t_6 = t_{5+1}$$

$$= {10 \choose 5} \left(y^{\frac{1}{2}} \right)^{10-5} \left(x^{\frac{1}{3}} \right)^5$$

$$= {10 \choose 5} (y)^{\frac{5}{2}} (x)^{\frac{5}{3}}$$

$$= \frac{10 \times 9 \times 8 \times 7 \times 6}{5 \times 4 \times 3 \times 2 \times 1} \text{ (y)} \frac{5}{2} \text{ (x)} \frac{5}{3}$$

$$=252 (y)^{\frac{5}{2}} (x)^{\frac{5}{3}}$$

$$\underline{Conclusion}: 6^{th} term = 252 (y)^{\frac{5}{2}} (x)^{\frac{5}{2}}$$

Question: 45

Solution:

To Find: value of a

For $(2 + a)^{50}$

A=2, b=a and n=50

We have, $t_{r+1} = \binom{n}{r} A^{n-r} b^r$

For the 17^{th} term, r=16

$$: t_{17} = t_{16+1}$$

$$=\binom{50}{16}(2)^{50-16}(a)^{16}$$

$$=\binom{50}{16}(2)^{34}(a)^{16}$$

For the 18^{th} term, r=17

$$... t_{18} = t_{17+1}$$

$$=\binom{50}{17}(2)^{50-17}(a)^{17}$$

$$=\binom{50}{17}(2)^{33}(a)^{17}$$

As 17th and 18th terms are equal

$$: t_{18} = t_{17}$$

$$\therefore \binom{50}{17} (2)^{33} (a)^{17} = \binom{50}{16} (2)^{34} (a)^{16}$$

$$\therefore \binom{50}{17} (2)^{33} (a)^{17} = \binom{50}{16} (2)^{34} (a)^{16}$$

$$\dots \left[\because \binom{n}{r} = \frac{n!}{(n-r)! \times (r)!} \right]$$

$$\therefore \frac{(a)^{17}}{(a)^{16}} = \frac{50!}{(50-16)! \times (16)!} \cdot \frac{(50-17)! \times (17)!}{50!} \cdot \frac{(2)^{34}}{(2)^{33}}$$

$$\therefore a = \frac{(50-17) \times (50-16)! \times 17 \times (16)!}{(50-16)! \times (16)!} .(2)$$

$$[: n! = n(n-1)!]$$

$$a = (50 - 17) \times 17.(2)$$

Conclusion: value of a = 1122

Question: 46

Solution:

To Find: Coefficients of x4

For $(1+x)^n$

We have a formula,

$$(1+x)^n = \sum_{r=0}^n \binom{n}{r} (1)^{n-r} x^r$$

$$= \binom{n}{0} \ (1)^n \ x^0 + \binom{n}{1} \ (1)^{n-1} \ x^1 + \binom{n}{2} \ (1)^{n-2} \ x^2 + \dots + \binom{n}{n} \ (1)^{n-n} \ x^n$$

$$= \binom{n}{0} x^0 + \binom{n}{1} x + \binom{n}{2} x^2 + \dots + \binom{n}{n} x^n$$

For $(1-x)^n$

a=1, b=-x and n=n

We have formula,

$$(1-x)^n = \sum_{r=0}^n {n \choose r} (1)^{n-r} (-x)^r$$

$$= {n \choose 0} (1)^{n} (-x)^{0} + {n \choose 1} (1)^{n-1} (-x)^{1} + {n \choose 2} (1)^{n-2} (-x)^{2} + \cdots + {n \choose n} (1)^{n-n} (-x)^{n}$$

$$= \binom{n}{0} (-x)^0 - \binom{n}{1} (x)^1 + \binom{n}{2} (x)^2 + \dots + \binom{n}{n} (-x)^n$$

$$(1+x)^3(1-x)^6$$

$$= \left\{ \binom{n}{0} x^{0} + \binom{n}{1} x + \binom{n}{2} x^{2} + \dots + \binom{n}{n} x^{n} \right\} \left\{ \binom{n}{0} (-x)^{0} - \binom{n}{1} (x)^{1} + \binom{n}{2} (x)^{2} + \dots + \binom{n}{n} (-x)^{n} \right\}$$

Coefficients of x4 are

$$x^0 x^4 = \binom{n}{0} \times \binom{n}{4} = C_0 C_4$$

$$x^{1}x^{3} = \binom{n}{1} \times (-1)\binom{n}{2} = -\binom{n}{1}\binom{n}{2} = -C_{1}C_{3}$$

$$x^2 \cdot x^2 = \binom{n}{2} \times \binom{n}{2} =$$

$$x^3 x^1 = \binom{n}{3} \times (-1) \binom{n}{1} = -\binom{n}{3} \binom{n}{1} = -C_3 C_1$$

$$x^4 x^0 = \binom{n}{4} \times \binom{n}{0} = C_4 C_0$$

Therefore, Coefficient of x4

$$= C_4C_0 - C_1C_3 + C_2C_2 - C_3C_1 + C_4C_0$$

Let us assume, n=4, it becomes

$${}^{4}C_{4}$$
 ${}^{4}C_{0}$ - ${}^{4}C_{1}$ ${}^{4}C_{3}$ + ${}^{4}C_{2}$ ${}^{4}C_{2}$ - ${}^{4}C_{3}$ ${}^{4}C_{1}$ + ${}^{4}C_{4}$ ${}^{4}C_{0}$

We know that,

$$\binom{n}{r} = \frac{n!}{(n-r)! \times r!}$$

By using above formula, we get,

$$^{4}C_{4}$$
 $^{4}C_{0}$ - $^{4}C_{1}$ $^{4}C_{3}$ + $^{4}C_{2}$ $^{4}C_{2}$ - $^{4}C_{3}$ $^{4}C_{1}$ + $^{4}C_{4}$ $^{4}C_{0}$

$$=(1)(1)-(4)(4)+(6)(6)-(4)(4)+(1)(1)$$

$$= 1 - 16 + 36 - 16 + 1$$

= 6

$$= {}^{4}C_{2}$$

Therefore, in general,

$$C_4C_0 - C_1C_3 + C_2C_2 - C_3C_1 + C_4C_0 = C_2$$

Therefore, Coefficient of $x^4 = C_2$

Conclusion:

- Coefficient of $x^4 = C_2$
- C_4C_0 C_1C_3 + C_2C_2 C_3C_1 + C_4C_0 = C_2

Question: 47

Solution:

<u>To Prove</u>: coefficient of x^n in $(1+x)^{2n} = 2 \times \text{coefficient of } x^n$ in $(1+x)^{2n-1}$

CLASS24

For $(1+x)^{2^n}$,

a=1, b=x and m=2n

We have a formula,

$$t_{r+1} = {m \choose r} a^{m-r} b^r$$

$$= {2n \choose r} (1)^{2n-r} (x)^r$$

$$=\binom{2n}{r}(x)^r$$

To get the coefficient of xn, we must have,

$$\mathbf{x}^{\mathbf{n}} = \mathbf{x}^{\mathbf{r}}$$

$$r = r$$

Therefore, the coefficient of $x^n = \binom{2n}{n}$

$$=\frac{(2n)!}{n!\times(2n-n)!}\;\dots\dots\left(\because\binom{n}{r}=\frac{n!}{r!\times(n-r)!}\right)$$

$$=\frac{(2n)!}{n! \times n!}$$

$$=\frac{2n\times(2n-1)!}{n!\times n(n-1)!}\dots\dots+\frac{2\times(2n-1)!}{n!\times (n-1)!}(n-1)!)$$

.....cancelling n

Therefore, the coefficient of x^n in $(1+x)^{2n} = \frac{2 \times (2n-1)!}{n! \times (n-1)!}$ eq(1)

Now for $(1+x)^{2n-1}$,

a=1, b=x and m=2n-1

We have formula,

$$t_{r+1} = \binom{m}{r} a^{m-r} b^r$$

$$= {2n-1 \choose r} (1)^{2n-1-r} (x)^{r}$$

$$= \binom{2n-1}{r} (x)^r$$

To get the coefficient of xn, we must have,

$$x^n = x^r$$

Therefore, the coefficient of x^n in $(1+x)^{2n-1} = {2n-1 \choose n}$

$$=\frac{(2n-1)!}{n!\times(2n-1-n)!}$$

$$= \frac{1}{2} \times \frac{2 \times (2n-1)!}{n! \times (n-1)!}$$

....multiplying and dividing by 2

Therefore,

coefficient of x^n in $(1+x)^{2n-1} =$ coefficient of x^n in $(1+x)^{2n}$ or

coefficient of x^n in $(1+x)^{2n} = 2 \times \text{coefficient of } x^n$ in $(1+x)^{2n-1}$

Hence proved.

Question: 48

Solution:

Given:
$$a = \frac{p}{2}$$
, b=2 and n=8

To find: middle term

Formula:

• The middle term =
$$\left(\frac{n+2}{2}\right)$$

•
$$t_{r+1} = \binom{n}{r} a^{n-r} b^r$$

Here, n is even.

Hence,

$$\left(\frac{n+2}{2}\right) = \left(\frac{8+2}{2}\right) = 5$$

Therefore, 5th tthe erm is the middle term.

For
$$t_5$$
, $r=4$

We have,
$$t_{r+1} = \binom{n}{r} a^{n-r} b^r$$

$$\therefore t_5 = \binom{8}{4} \left(\frac{p}{2}\right)^{8-4} 2^4$$

$$\therefore t_5 = \frac{8 \times 7 \times 6 \times 5}{4 \times 3 \times 2 \times 1} \cdot \left(\frac{p}{2}\right)^4 \cdot (16)$$

$$\therefore t_5 = 70. \left(\frac{p^4}{16}\right). (16)$$

Conclusion: The middle term is 70 p4.

Exercise: 10B

Question: 1

Solution:

To show: the term independent of x in the expansion of $\left(x - \frac{1}{x}\right)^{10}$ is -252.

Formula Used:

General term, T_{r+1} of binomial expansion $(x + y)^n$ is given by,

$$T_{r+1} = {}^{n}C_{r} x^{n-r} y^{r}$$
 where

$$^{n}C_{r} = \frac{n!}{r!(n-r)!}$$

Now, finding the general term of the expression, $\left(X - \frac{1}{x}\right)^{10}$, we get

$$T_{r+1} = {}^{10}C_r \times x^{10-r} \times \left(\frac{-1}{x}\right)^r$$

For finding the term which is independent of x,

$$10-2r=5$$

Thus, the term which would be independent of x is T₆

$$T_6 = {}^{10}C_5 \times x^{10-5} \times \left(\frac{-1}{x}\right)^5$$

$$T_6 = {}^{10}C_5 \times x^{10-5} \times \left(\frac{-1}{x}\right)^5$$

$$T_6 = - {}^{10}C_5$$

$$T_6 = -\frac{10!}{5!(10-5)!}$$

$$T_6 = -\frac{10!}{5! \times 5!}$$

$$T_6 = - \frac{10 \times 9 \times 8 \times 7 \times 6 \times 5!}{5! \times 5 \times 4 \times 3 \times 2}$$

$$T_{6} = - \frac{10 \times 9 \times 8 \times 7 \times 6 \times 5!}{5! \times 5 \times 4 \times 3 \times 2}$$

$$T_6 = 252$$

Thus, the term independent of x in the expansion of $\left(x - \frac{1}{x}\right)^{10}$ is -252.

Question: 2

Solution:

To prove: that. If the coefficients of x^2 and x^3 in the expansion of $(3 + px)^9$ are the same then $p = \frac{9}{7}$.

General term, T_{r+1} of binomial expansion $(x + y)^n$ is given by,

$$T_{r+1} = {}^{n}C_{r} x^{n-r} y^{r}$$
 where

$${}^{n}C_{r} = \frac{n!}{r!(n-r)!}$$

Now, finding the general term of the expression, $(3 + px)^9$, we get

$$T_{r+1} = {}^{9}C_r \times 3^{9-r} \times (px)^r$$

For finding the term which has x^2 in it, is given by

r=2

Thus, the coefficients of x2 are given by,

$$T_3 = {}^9C_2 \times 3^{9-2} \times (px)^2$$

$$T_3 = {}^9C_2 \times 3^7 \times p^2 \times x^2$$

For finding the term which has x^2 in it, is given by

r=3

Thus, the coefficients of x3 are given by,

$$T_3 = {}^9C_3 \times 3^{9-3} \times (px)^3$$

$$T_3 = {}^9C_3 \times 3^6 \times p^3 \times x^3$$

As the coefficients of x^2 and x^3 in the expansion of $(3 + px)^9$ are the same.

$${}^{9}C_{3} \times 3^{6} \times p^{3} = {}^{9}C_{2} \times 3^{7} \times p^{2}$$

$${}^{9}C_{3} \times p = {}^{9}C_{2} \times 3$$

$$\frac{9!}{3! \times 6!} \times p = \frac{9!}{2! \times 7!} \times 3$$

$$\frac{9!}{3 \times 2! \times 6!} \times p = \frac{9!}{2! \times 7 \times 6!} \times 3$$

$$p=\frac{9}{7}$$

Thus, the value of p for which coefficients of x^2 and x^3 in the expansion of $(3 + px)^9$ are the same is $\frac{9}{7}$

Question: 3

Solution:

To show: that the coefficient of x^{-3} in the expansion of $\left(x - \frac{1}{x}\right)^{11}$ is -330.

Formula Used:

General term, T_{r+1} of binomial expansion $(x + y)^n$ is given by,

$$T_{r+1} = {}^{n}C_{r} x^{n-r} y^{r}$$
 where

$${}^{n}C_{r} = \frac{n!}{r!(n-r)!}$$

$$T_{r+1} = {}^{11}C_r \times x^{11-r} \times \left(\frac{-1}{x}\right)^r$$

For finding the term which has x^{-3} in it, is given by

$$2r=14$$

Thus, the term which the term which has χ^{-3} in it is T_{B}

$$T_8 = {}^{11}C_7 \times x^{11-7} \times \left(\frac{-1}{x}\right)^7$$

$$T_8 = -^{11}C_7 \times x^{-3}$$

$$T_8 = -\frac{11!}{7!(11-7)!}$$

$$T_6 = -\frac{11 \times 10 \times 9 \times 8 \times 7!}{7! \times 4 \times 3 \times 2}$$

$$T_6 = -330$$

Thus, the coefficient of x^{-3} in the expansion of $\left(x - \frac{1}{x}\right)^{11}$ is -330.

Question: 4

Solution:

To show: that the middle term in the expansion of $\left(\frac{2x^2}{3} + \frac{3}{2x^2}\right)^{10}$ is 252.

Formula Used:

General term, T_{r+1} of binomial expansion $(x + y)^n$ is given by,

$$T_{r+1} = {}^{n}C_{r} x^{n-r} y^{r} where$$

$${}^{\mathrm{n}}\mathrm{C}_{\mathrm{r}} = \frac{n!}{r!(n-r)!}$$

Total number of terms in the expansion is 11

Thus, the middle term of the expansion is T₆ and is given by,

$$T_6 = {}^{10}C_{5} \times \left(\frac{2x^2}{3}\right)^5 \times \left(\frac{3}{2x^2}\right)^5$$

$$T_6 = {}^{10}C_5$$

$$T_6 = \frac{10 \times 9 \times 8 \times 7 \times 6 \times 5!}{5! \times 5 \times 4 \times 3 \times 2}$$

$$T_6 = 252$$

Thus, the middle term in the expansion of $\left(\frac{2x^2}{2} + \frac{3}{2x^2}\right)^{10}$ is 252.

Question: 5

Solution:

CLASS24

Formula Used:

General term, T_{r+1} of binomial expansion $(x + y)^n$ is given by,

$$T_{r+1} = {}^{n}C_{r} x^{n-r} y^{r}$$
 where

$$^{n}C_{r} = \frac{n!}{r!(n-r)!}$$

Now, finding the general term of the expression, $\left(\frac{x}{2} - \frac{3}{v^2}\right)^{10}$, we get

$$\mathsf{T}_{r+1} = \, {}^{10}\mathsf{C}_r \times \left(\tfrac{\mathsf{x}}{2} \right)^{10-r} \times \left(\tfrac{-3}{\mathsf{x}^2} \right)^r$$

For finding the term which has x^4 in it, is given by

$$10-3r=4$$

3r=6

r=2

Thus, the term which has x4 in it isT3

$$T_3 = {}^{10}C_2 \times \left(\frac{x}{2}\right)^8 \times \left(\frac{-3}{x^2}\right)^2$$

$$T_3 = \frac{10! \times 9}{2! \times 9! \times 2^8}$$

$$T_3 = \frac{10 \times 9 \times 8! \times 9}{2 \times 8! \times 2^8}$$

$$T_3 = \frac{405}{256}$$

Thus, the coefficient of x^4 in the expansion of $\left(\frac{x}{2} - \frac{3}{\pi^2}\right)^{10}$ is $\frac{405}{256}$

Question: 6

Solution:

To prove: that there is no term involving x^6 in the expansion of $\left(2x^2 - \frac{3}{x}\right)^{11}$

Formula Used:

General term, T_{r+1} of binomial expansion $(x + y)^n$ is given by,

$$T_{r+1} = {}^{n}C_{r} x^{n-r} y^{r}$$
 where

$$^{n}C_{r} = \frac{n!}{r!(n-r)!}$$

Now, finding the general term of the expression, $\left(2x^2 - \frac{3}{x}\right)^{11}$, we get

$$T_{r+1} = {}^{11}C_r \times (2x^2)^{11-r} \times \left(\frac{-3}{x}\right)^r$$

For finding the term which has x^6 in it, is given by

3r = 16

$$r = \frac{16}{3}$$

CLASS24

Since, $r = \frac{16}{3}$ is not possible as r needs to be a whole number

Thus, there is no term involving x^6 in the expansion of $\left(2x^2 - \frac{3}{x}\right)^{11}$.

Question: 7

Solution:

To show: that the coefficient of x^4 in the expansion of $(1 + 2x + x^2)^5$ is 212.

Formula Used:

We have.

$$(1 + 2x + x^2)^5 = (1 + x + x + x^2)^5$$

$$=(1+x+x(1+x))^5$$

$$=(1 + x)^5(1 + x)^5$$

$$=(1+x)^{10}$$

General term, T_{r+1} of binomial expansion $(x + y)^n$ is given by,

$$T_{r+1} = {}^{n}C_{r} x^{n-r} y^{r}$$
 where s

$${}^{n}C_{r} = \frac{n!}{r!(n-r)!}$$

Now, finding the general term,

$$T_{r+1} = {}^{10}C_r \times x^{10-r} \times (1)^r$$

$$10-r=4$$

Thus, the coefficient of x^4 in the expansion of $(1 + 2x + x^2)^5$ is given by,

$$^{10}C_4 = \frac{10!}{4!6!}$$

$$^{10}C_4 = \frac{^{10\times9\times8\times7\times6!}}{^{24\times6!}}$$

$$^{10}C_4 = 210$$

Thus, the coefficient of x^4 in the expansion of $(1 + 2x + x^2)^5$ is 210

Question: 8

Solution:

To find: the number of terms in the expansion of $\left(\sqrt{2}+1\right)^5+\left(\sqrt{2}-1\right)^5$

Formula Used:

Binomial expansion of $(x + y)^n$ is given by,

$$(x+y)^n = \sum_{r=0}^n \binom{n}{r} x^{n-r} \times y^r$$

Thus,

$$(\sqrt{2}+1)^5+(\sqrt{2}-1)^5$$
 CLASS24

$$(\sqrt{2} + 1)^{3} + (\sqrt{2} - 1)^{3}$$

$$= ((\sqrt{2})^{5} + (\sqrt{2})^{4} {5 \choose 1} + \dots + {5 \choose 5})$$

$$+ ((\sqrt{2})^{5} - (\sqrt{2})^{4} {5 \choose 1} + \dots - {5 \choose 5})$$

So, the no. of terms left would be 6

Thus, the number of terms in the expansion of $(\sqrt{2}+1)^5+(\sqrt{2}-1)^5$ is 6

Question: 9

Solution:

To find: the term independent of x in the expansion of $\left(x - \frac{1}{3x^2}\right)^9$?

Formula Used:

A general term, T_{r+1} of binomial expansion $(x + y)^n$ is given by,

 $T_{r+1} = {}^{n}C_{r} x^{n-r} y^{r}$ where

$${}^{\mathrm{n}}\mathrm{C}_{\mathrm{r}} = \frac{n!}{r!(n-r)!}$$

Now, finding the general term of the expression, $\left(\chi - \frac{1}{3x^2}\right)^9$, we get

$$T_{r+1} = {}^{9}C_{r} \times x^{9-r} \times \left(\frac{-1}{3x^{2}}\right)^{r}$$

$$T_{r+1} = {}^{9}C_r \times x^{9-r} \times (-1) \times 3x^{-2r}$$

$$T_{r+1} = {}^{9}C_r \times (-1) \times 3x^{9-3r}$$

For finding the term which is independent of x,

$$9-3r=0$$

r=3

Thus, the term which would be independent of x is T4

Thus, the term independent of x in the expansion of $\left(X - \frac{1}{x}\right)^{10}$ is T_4 i.e 4^{th} term

Question: 10

Solution:

To find: that the middle term in the expansion of $\left(\frac{2x^2}{3} + \frac{3}{2x^2}\right)^{10}$ is 252.

Formula Used:

A general term, T_{r+1} of binomial expansion $(x + y)^n$ is given by,

$$T_{r+1} = {}^{n}C_{r} x^{n-r} y^{r}$$
 where

$${}^{n}C_{r} = \frac{n!}{r!(n-r)!}$$

Total number of terms in the expansion is 11

Thus, the middle term of the expansion is T₆ and is given by,

$$T_6 = {}^{10}C_{5} \times \left(\frac{2x^2}{3}\right)^5 \times \left(\frac{3}{2x^2}\right)^5$$

CLASS24

$$T_6 = {}^{10}C_5$$

$$T_6 = \frac{10 \times 9 \times 8 \times 7 \times 6 \times 5!}{5! \times 5 \times 4 \times 3 \times 2}$$

$$T_6 = 252$$

Thus, the middle term in the expansion of $\left(\frac{2x^2}{2} + \frac{3}{3x^2}\right)^{10}$ is 252.

Question: 11

Solution:

To find: the coefficient of x^7y^2 in the expansion of $(x + 2y)^9$

Formula Used:

A general term, T_{r+1} of binomial expansion $(x + y)^n$ is given by,

$$T_{r+1} = {}^{n}C_{r} x^{n-r} y^{r}$$
 where

$${}^{n}C_{r} = \frac{n!}{r!(n-r)!}$$

Now, finding the general term of the expression, $(x + 2y)^9$, we get

$$T_{r+1} = {}^{9}C_{r} \times x^{9-r} \times (2y)^{r}$$

The value of r for which coefficient of x⁷y² is defined

r=2

Hence, the coefficient of x^7y^2 in the expansion of $(x + 2y)^9$ is given by:

$$T_3 = {}^9C_3 \times x^{9-2} \times (2y)^2$$

$$T_3 = {}^9C_3 \times 4 \times x^7 \times (y)^2$$

$$T_3 = \frac{9!}{3! \times 6!} \times 4 \times x^7 \times (y)^2$$

$$T_3 = \frac{9 \times 8 \times 7 \times 6!}{6 \times 6!} \times 4 \times x^7 \times (y)^2$$

$$T_3 = 336$$

Thus, the coefficient of x^7y^2 in the expansion of $(x + 2y)^9$ is 336

Question: 12

Solution:

To find: the value of r with respect to the binomial expansion of $(1 + x)^{34}$ where the coefficients of the (r - 5)th and (2r - 1)th terms are equal to each other

Formula Used:

The general term, T_{r+1} of binomial expansion $(x + y)^n$ is given by,

$$T_{r+1} = {}^{n}C_{r} x^{n-r} y^{r}$$
 where

$${}^{n}C_{r} = \frac{n!}{r!(n-r)!}$$

Now, finding the (r - 5)th term, we get

Thus, the coefficient of (r - 5)th term is $^{34}C_{r-6}$

Now, finding the (2r - 1)th term, we get

$$T_{2r-1} = {}^{34}C_{2r-2} \times (x)^{2r-2}$$

Thus, coefficient of (2r - 1)th term is $^{34}C_{2r-2}$

As the coefficients are equal, we get

$$^{34}C_{2r-2} = ^{34}C_{r-6}$$

Value of r=-4 is not possible

Thus, value of r is 14

Question: 13

Solution:

To find: 4th term from the end in the expansion of $\left(\frac{3}{x^2} - \frac{x^2}{6}\right)^7$

Formula Used:

A general term, T_{r+1} of binomial expansion $(x + y)^n$ is given by,

$$T_{r+1} = {}^{n}C_{r} x^{n-r} y^{r}$$
 where

$$^{\mathrm{n}}\mathrm{C}_{\mathrm{r}} = \frac{n!}{r!(n-r)!}$$

Total number of terms in the expansion is 8

Thus, the 4th term of the expansion is T₅ and is given by,

$$T_5 = {}^{7}C_{5} \times \left(\frac{3}{x^2}\right)^3 \times \left(\frac{-x^3}{6}\right)^4$$

$$^{T_5}=\frac{\scriptscriptstyle 7\times 6\times 5!}{\scriptscriptstyle 2\times 5!}\times \frac{\scriptscriptstyle 3\times 3\times 3}{\scriptscriptstyle 6\times 6\times 6\times 6}\times x^{-18}$$

$$T_5 = \frac{7 \times 6 \times 5!}{2 \times 5!} \times \frac{3 \times 3 \times 3}{6 \times 6 \times 6 \times 6} \times X^{-18}$$

$$T_{5}=\frac{7}{16}x^{-18}$$

Thus, a 4th term from the end in the expansion of $\left(\frac{3}{\pi^2} - \frac{x^2}{\epsilon}\right)^7$ is $T_5 = \frac{7}{16}x^{-18}$

Question: 14

Solution:

To find: the coefficient of x^n in the expansion of $(1 + x) (1 - x)^n$.

Formula Used:

$$(x+y)^n = \sum_{r=0}^n \binom{n}{r} x^{n-r} \times y^r$$

Thus,

$$(1 + x) (1 - x)^{n}.$$

$$= (1 + x) \left(\binom{n}{0} (-x) + \binom{n}{1} (-x)^{1} + \binom{n}{2} (-x)^{2} + ... + \binom{n}{n-1} (-x)^{n-1} + \binom{n}{n} (-x)^{n} \right)$$

Thus, the coefficient of $(x)^n$ is,

 ${}^{n}C_{n}$ - ${}^{n}C_{n-1}$ (If n is even)

 $-^{n}C_{n}+^{n}C_{n-1}$ (If n is odd)

Thus, the coefficient of $(x)^n$ is, ${}^nC_{n-}{}^nC_{n-1}$ (If n is even) and $-{}^nC_{n+}{}^nC_{n-1}$ (If n is odd)

Question: 15

Solution:

To find: the value of n with respect to the binomial expansion of $(a + b)^n$ where the coefficients of the 4^{th} and 13^{th} terms are equal to each other

Formula Used:

A general term, T_{r+1} of binomial expansion $(x + y)^n$ is given by,

 $T_{r+1} = {}^{n}C_{r} x^{n-r} y^{r}$ where

$$^{n}C_{r} = \frac{n!}{r!(n-r)!}$$

Now, finding the 4th term, we get

$$T_4 = {}^{n}C_3 \times a^{n-3} \times (b)^3$$

Thus, the coefficient of a 4th term is ⁿC₃

Now, finding the 13th term, we get

$$T_{13} = {}^{n}C_{12} \times a^{n-12} \times (b)^{12}$$

Thus, coefficient of 4th term is C12

As the coefficients are equal, we get

$${}^{n}C_{12} = {}^{n}C_{3}$$

Also,
$${}^{n}C_{r} = {}^{n}C_{n-r}$$

$${}^{n}C_{n-12} = {}^{n}C_{3}$$

$$n-12=3$$

Thus, value of n is 15

Question: 16

Solution:

To find: the positive value of m for which the coefficient of x^2 in the expansion o

Formula Used:

General term, T_{r+1} of binomial expansion $(x+y)^n$ is given by,

$$T_{r+1} = {}^{n}C_{r} x^{n-r} y^{r}$$
 where

$$^{n}C_{r} = \frac{n!}{r!(n-r)!}$$

Now, finding the general term of the expression, $(1 + x)^m$, we get

$$T_{r+1} = {}^{m}C_{r} \times 1^{m-r} \times (x)^{r}$$

$$T_{r+1}=^{m}C_{r}\times(x)^{r}$$

The coefficient of $(x)^2$ is mC_2

$$^{m}C_{2}=6$$

$$\frac{m!}{2(m-2)!} = 6$$

$$\frac{m(m-1)(m-2)!}{2(m-2)!}=6$$

$$m^2 - m - 6 = 0$$

$$(m-3)(m+2)=0$$

$$m=3,-2$$

Since m cannot be negative. Therefore,

m=3

Thus, positive value of m is 3 for which the coefficient of x2 in the expansion of $(1 + x)^m$ is 6