Chapter: 24. HYPERBOLA

Exercise: 24

Question: 1

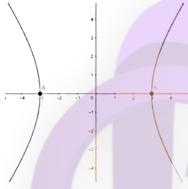
Solution:

Given Equation:

$$\frac{x^2}{9} - \frac{y^2}{16} = 1$$

 $\frac{x^2}{9} - \frac{y^2}{16} = 1$ Comparing with the equation of hyperbola $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ we get,

$$a = 3$$
 and $b = 4$



(i) Length of Transverse axis = 2a = 6 units.

Length of Conjugate axis = 2b = 8 units.

(ii) Coordinates of the vertices = $(\pm a, 0) = (\pm 3, 0)$

(iv) Here, eccentricity,
$$e = \sqrt{1 + \frac{b^2}{a^2}} = \sqrt{1 + \frac{16}{9}} = \sqrt{\frac{25}{9}} = \frac{5}{3}$$

(iii) Coordinates of the foci = $(\pm ae, 0) = (\pm 5, 0)$

(v) Length of the rectum =
$$\frac{2b^2}{a} = \frac{32}{3} = 10.67$$
 units.

Question: 2

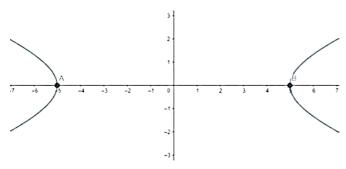
Solution:

Given Equation:

$$\frac{x^2}{25} - \frac{y^2}{4} = 1$$

 $\frac{x^2}{25} - \frac{y^2}{4} = 1$ Comparing with the equation of hyperbola $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ we get,

$$a = 5$$
 and $b = 2$



(i) Length of Transverse axis = 2a = 10 units.

Length of Conjugate axis = 2b = 4 units.

(ii) Coordinates of the vertices = $(\pm a, 0) = (\pm 5, 0)$

(iv) Here, eccentricity,
$$e = \sqrt{1 + \frac{b^2}{a^2}} = \sqrt{1 + \frac{4}{25}} = \sqrt{\frac{29}{25}} = \frac{\sqrt{29}}{5}$$

(iii) Coordinates of the foci =
$$(\pm ae, 0) = (\pm \sqrt{29}, 0)$$

(v) Length of the rectum =
$$\frac{2b^2}{a} = \frac{8}{5} = 1.6$$
 units.

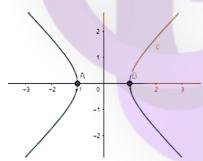
Question: 3

Solution:

Given Equation:
$$x^2 - y^2 = 1$$

Comparing with the equation of hyperbola
$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$$
 we get,

$$a = 1$$
 and $b = 1$



(i) Length of Transverse axis = 2a = 2 units.

Length of Conjugate axis = 2b = 2 units.

(ii) Coordinates of the vertices =
$$(\pm a, 0) = (\pm 1, 0)$$

(iv) Here, eccentricity,
$$e = \sqrt{1 + \frac{b^2}{a^2}} = \sqrt{1 + \frac{1}{1}} = \sqrt{\frac{2}{1}} = \sqrt{2}$$

(iii) Coordinates of the foci =
$$(\pm ae, 0) = (\pm \sqrt{2}, 0)$$

(v) Length of the rectum =
$$\frac{2b^2}{a} = 2$$
 units.

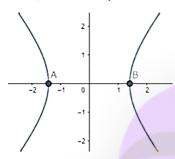
Solution:

CLASS24

Given Equation:
$$3x^2 - 2y^2 = 6 \Rightarrow \frac{x^2}{2} - \frac{y^2}{2} = 1$$

Comparing with the equation of hyperbola $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ we get,

$$a = \sqrt{2}$$
 and $b = \sqrt{3}$



(i) Length of Transverse axis = $2a = 2\sqrt{2}$ units.

Length of Conjugate axis = $2b = 2\sqrt{3}$ units.

(ii) Coordinates of the vertices = $(\pm a, 0) = (\pm \sqrt{2}, 0)$

(iv) Here, eccentricity,
$$e = \sqrt{1 + \frac{b^2}{a^2}} = \sqrt{1 + \frac{3}{2}} = \sqrt{\frac{5}{2}}$$

(iii) Coordinates of the foci = $(\pm ae, 0) = (\pm \sqrt{5}, 0)$

(v) Length of the rectum =

$$\frac{2b^2}{a} = \frac{6}{\sqrt{2}} = \frac{6\sqrt{2}}{2} = 3\sqrt{2}$$

Question: 5

Find the (i) leng

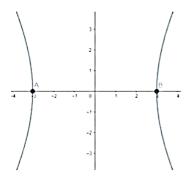
Solution:

Given Equation:
$$25x^2 - 9y^2 = 225 \Rightarrow$$

$$\frac{x^2}{9} - \frac{y^2}{25} = 1$$

Comparing with the equation of hyperbola

$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$$



(i) Length of Transverse axis = 2a = 6 units.

Length of Conjugate axis = 2b = 10 units.

(ii) Coordinates of the vertices = $(\pm a, 0) = (\pm 3, 0)$

(iv) Here, eccentricity,
$$e = \sqrt{1 + \frac{b^2}{a^2}} = \sqrt{1 + \frac{25}{9}} = \sqrt{\frac{34}{9}} = \frac{\sqrt{34}}{3}$$

(iii) Coordinates of the foci = $(\pm ae, 0) = (\pm \sqrt{34}, 0)$

(v) Length of the rectum =
$$\frac{2b^2}{a} = \frac{50}{3} = 16.67$$
 units.

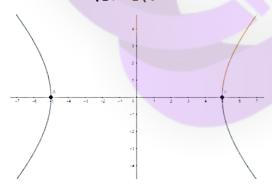
Question: 6

Solution:

Given Equation:
$$24x^2 - 25y^2 = 600 \Rightarrow \frac{x^2}{25} - \frac{y^2}{24} = 1$$

Comparing with the equation of hyperbola $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ we get,

$$a = 5$$
 and $b = \sqrt{24} = 2\sqrt{6}$



(i) Length of Transverse axis = 2a = 10 units.

Length of Conjugate axis = $2b = 4\sqrt{6}$ units.

(ii) Coordinates of the vertices = $(\pm a, 0) = (\pm 5, 0)$

(iv) Here, eccentricity,
$$e = \sqrt{1 + \frac{b^2}{a^2}} = \sqrt{1 + \frac{24}{25}} = \sqrt{\frac{49}{25}} = \frac{7}{5}$$

(iii) Coordinates of the foci = $(\pm ae, 0) = (\pm 7, 0)$

(v) Length of the rectum = $\frac{2b^2}{3} = \frac{48}{5} = 9.6$ units.

Question: 7

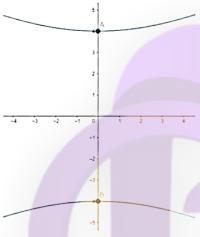
Solution:

Given Equation:

$$\frac{y^2}{16} - \frac{x^2}{49} = \frac{y^2}{16}$$

 $\frac{y^2}{16} - \frac{x^2}{49} = 1$ Comparing with the equation of hyperbola $\frac{y^2}{a^2} - \frac{x^2}{b^2} = 1$ we get,

$$a = 4$$
 and $b = 7$



(i) Length of Transverse axis = 2a = 8 units.

Length of Conjugate axis = 2b = 14 units.

(ii) Coordinates of the vertices = $(0, \pm a) = (0, \pm 4)$

(iv) Here, eccentricity,
$$e = \sqrt{1 + \frac{b^2}{a^2}} = \sqrt{1 + \frac{49}{16}} = \sqrt{\frac{65}{16}} = \frac{\sqrt{65}}{4}$$

(iii) Coordinates of the foci = $(0, \pm ae) = (0, \pm \sqrt{65})$

(v) Length of the rectum =
$$\frac{2b^2}{a} = \frac{98}{4} = 24.5$$
 units.

Question: 8

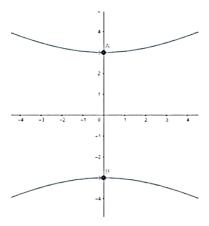
Solution:

Given Equation:

$$\frac{y^2}{9} - \frac{x^2}{27} = 1$$

Comparing with the equation of hyperbola $\frac{y^2}{a^2} - \frac{x^2}{b^2} = 1$ we get,

$$a = 3$$
 and $b = \sqrt{27} = 3\sqrt{3}$



(i) Length of Transverse axis = 2a = 6 units.

Length of Conjugate axis = $2b = 6\sqrt{3}$ units.

(ii) Coordinates of the vertices = $(0, \pm a) = (0, \pm 3)$

(iv) Here, eccentricity,
$$e = \sqrt{1 + \frac{b^2}{a^2}} = \sqrt{1 + \frac{27}{9}} = \sqrt{\frac{36}{9}} = \frac{6}{3} = 2$$

(iii) Coordinates of the foci = $(0, \pm ae) = (0, \pm 6)$

(v) Length of the rectum =
$$\frac{2b^2}{a} = \frac{54}{3} = 18$$
 units.

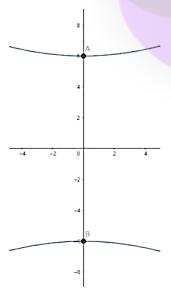
Question: 9

Solution:

Given Equation:
$$3y^2 - x^2 = 108 \Rightarrow \frac{y^2}{26} - \frac{x^2}{100} = 1$$

Comparing with the equation of hyperbola $\frac{y^2}{a^2} - \frac{x^2}{b^2} = 1$ we get,

$$a = 6$$
 and $b = \sqrt{108} = 6\sqrt{3}$



(i) Length of Transverse axis = 2a = 12 units.

Length of Conjugate axis = $2b = 12\sqrt{3}$ units.

(ii) Coordinates of the vertices = $(0, \pm a) = (0, \pm 6)$

(iv) Here, eccentricity,
$$e = \sqrt{1 + \frac{b^2}{a^2}} = \sqrt{1 + \frac{108}{36}} = \sqrt{1 + 3} = 2$$

- (iii) Coordinates of the foci = $(0, \pm ae) = (0, \pm 12)$
- (v) Length of the rectum = $\frac{2b^2}{a} = \frac{216}{6} = 36$ units.

Question: 10

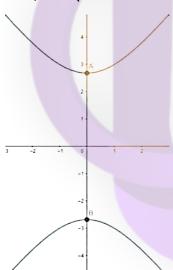
Solution:

Given Equation:
$$5y^2 - 9x^2 = 36 \Rightarrow$$

$$\frac{y^2}{36/5} - \frac{x^2}{4} = 1$$

Given Equation: $5y^2 - 9x^2 = 36 \Rightarrow \frac{y^2}{36/5} - \frac{x^2}{4} = 1$ Comparing with the equation of hyperbola $\frac{y^2}{a^2} - \frac{x^2}{b^2} = 1$ we get,

$$a = \sqrt{\frac{36}{5}} = \frac{6}{\sqrt{5}}$$
 and $b = 2$



(i) Length of Transverse axis = $2a = \frac{12}{\sqrt{5}}$ units.

Length of Conjugate axis = 2b = 4 units.

(ii) Coordinates of the vertices = $(0, \pm a) = (0, \pm \frac{6}{\sqrt{5}})$

(iv) Here, eccentricity,
$$e = \sqrt{1 + \frac{b^2}{a^2}} = \sqrt{1 + \frac{4}{36/5}} = \sqrt{1 + \frac{20}{36}} = \frac{\sqrt{56}}{6} = \frac{\sqrt{14}}{3}$$

(iii) Coordinates of the foci =
$$(0, \pm ae) = (0, \pm \frac{6}{\sqrt{5}}, \frac{\sqrt{14}}{3}) = (0, \frac{2\sqrt{14}}{\sqrt{5}})$$

(v) Length of the rectum =
$$\frac{2b^2}{a} = \frac{8}{6\sqrt{5}} = \frac{8\sqrt{5}}{6} = \frac{4\sqrt{5}}{3}$$
 units.

Question: 11

Solution:

Given: Vertices at $(\pm 6, 0)$ and foci at $(\pm 8, 0)$

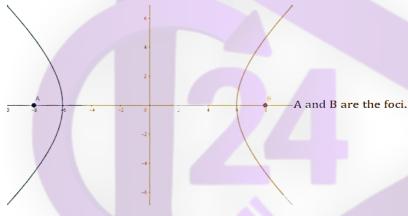
Need to find: The equation of the hyperbola.

Let, the equation of the parabola be: $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$

Vertices of the parabola is at (±6,0)

That means a = 6

The foci are given at (±8, 0)



That means, ae = 8, where e is the eccentricity.

$$\Rightarrow$$
 6e = 8 [As a = 6]

$$\Rightarrow e = \frac{8}{6} = \frac{4}{3}$$

We know that,

$$e = \sqrt{1 + \frac{b^2}{a^2}}$$

Therefore,

$$\Rightarrow \sqrt{1 + \frac{b^2}{a^2}} = \frac{4}{3}$$

$$\Rightarrow 1 + \frac{b^2}{a^2} = \frac{16}{9}$$
 [Squaring both sides]

$$\Rightarrow \frac{b^2}{a^2} = \frac{16}{9} - 1 = \frac{7}{9}$$

$$\Rightarrow b^2 = a^2 \frac{7}{9}$$

$$\Rightarrow$$
 b² = 36 × $\frac{7}{9}$ = 4 × 7 = 28 [As a = 6]

So, the equation of the hyperbola is,

$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 \Rightarrow \frac{x^2}{36} - \frac{y^2}{28} = 1$$
 [Answer]

Question: 12

Solution:

Given: Vertices at $(0, \pm 5)$ and foci at $(0, \pm 8)$

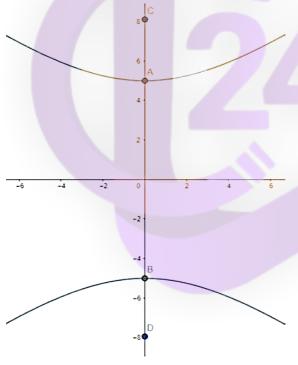
Need to find: The equation of the hyperbola.

Let, the equation of the parabola be: $\frac{y^2}{a^2} - \frac{x^2}{b^2} = 1$

Vertices of the parabola are at (0, ±5)

That means a = 5

The foci are given at (0, ±8)



A and B are the vertices. C and D are the foci.

That means, ae = 8, where e is the eccentricity.

$$\Rightarrow 5e = 8 \text{ [As a = 5]}$$

$$\Rightarrow$$
 e = $\frac{8}{5}$

$$\Rightarrow \sqrt{1 + \frac{b^2}{a^2}} = \frac{8}{5}$$

$$\Rightarrow 1 + \frac{b^2}{a^2} = \frac{64}{25}$$
 [Squaring both sides]

$$\Rightarrow \frac{b^2}{a^2} = \frac{64}{25} - 1 = \frac{39}{25}$$

$$\Rightarrow b^2 = a^2 \frac{39}{25}$$

$$\Rightarrow b^2 = 25 \times \frac{39}{25} = 39 \text{ [As a = 5]}$$

So, the equation of the hyperbola is,

$$\frac{y^2}{a^2} - \frac{x^2}{b^2} = 1 \implies \frac{y^2}{25} - \frac{x^2}{39} = 1$$
 [Answer]

Question: 13

Solution:

Given: Foci are $(\pm\sqrt{29},0)$, the transverse axis is of the length 10

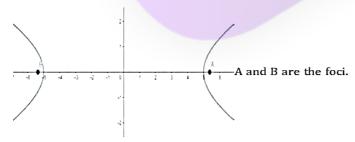
Need to find: The equation of the hyperbola.

Let, the equation of the hyperbola be: $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$

The transverse axis is of the length 10, i.e., 2a = 10

Therefore, a = 5

The foci are given at $(\pm\sqrt{29},0)$



That means, $ae = \pm \sqrt{29}$, where e is the eccentricity.

$$\Rightarrow 5e = \sqrt{29} \text{ [As a = 5]}$$

$$\Rightarrow$$
 e = $\frac{\sqrt{29}}{5}$

$$\Rightarrow \sqrt{1 + \frac{b^2}{a^2}} = \frac{\sqrt{29}}{5}$$

$$\Rightarrow 1 + \frac{b^2}{a^2} = \frac{29}{25}$$
 [Squaring both sides]

$$\Rightarrow \frac{b^2}{a^2} = \frac{29}{25} - 1 = \frac{4}{25}$$

$$\Rightarrow b^2 = a^2 \frac{4}{25}$$

$$\Rightarrow b^2 = 25 \times \frac{4}{25} = 4 \text{ [As a = 5]}$$

So, the equation of the hyperbola is,

$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 \implies \frac{x^2}{25} - \frac{y^2}{4} = 1$$
 [Answer]

Question: 14

Solution:

Given: Foci are (±5, 0), the conjugate axis is of the length 8

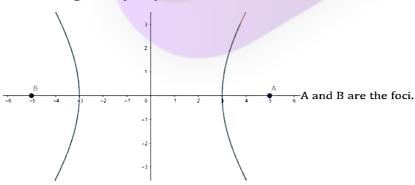
Need to find: The equation of the hyperbola and eccentricity.

Let, the equation of the hyperbola be: $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$

The conjugate axis is of the length 8, i.e., 2b = 8

Therefore, b = 4

The foci are given at (±5, 0)



That means, ae = 5, where e is the eccentricity.

We know that,
$$e = \sqrt{1 + \frac{b^2}{a^2}}$$

Therefore,

$$\Rightarrow a\sqrt{1 + \frac{b^2}{a^2}} = 5$$

$$\Rightarrow \sqrt{1 + \frac{b^2}{a^2}} = \frac{5}{a}$$

$$\Rightarrow 1 + \frac{b^2}{a^2} = \frac{25}{a^2}$$
 [Squaring both sides]

$$\Rightarrow \frac{b^2}{a^2} = \frac{25}{a^2} - 1 = \frac{25 - a^2}{a^2}$$

$$\Rightarrow$$
 b² = 25 - a²

$$\Rightarrow$$
 a² = 25 - b² = 25 - 16 = 9

So, the equation of the hyperbola is,

$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 \Rightarrow \frac{x^2}{9} - \frac{y^2}{16} = 1$$

Eccentricity,
$$e = \sqrt{1 + \frac{b^2}{a^2}} = \sqrt{1 - \frac{16}{9}} = \sqrt{\frac{25}{9}} = \frac{5}{3}$$
 [Answer]

Question: 15

Solution:

Given: Foci are $(\pm 3\sqrt{5},0)$ the length of the latus rectum is 8 units

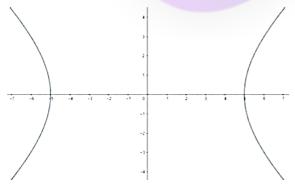
Need to find: The equation of the hyperbola.

Let, the equation of the hyperbola be: $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$

The length of the latus rectum is 8 units.

Therefore,
$$\frac{2b^2}{a} = 8 \Rightarrow b^2 = 4a$$
 --- (1)

The foci are given at $(\pm 3\sqrt{5},0)$



That means, ae = $3\sqrt{5}$, where e is the eccentricity.

$$\Rightarrow a\sqrt{1 + \frac{b^2}{a^2}} = 3\sqrt{5}$$

$$\Rightarrow a \frac{\sqrt{a^2 + b^2}}{a} = 3\sqrt{5}$$

$$\Rightarrow a^2 + b^2 = 45$$
 [Squaring both sides]

$$\Rightarrow a^2 + 4a = 45$$
 [From (1)]

$$\Rightarrow a^2 + 4a - 45 = 0$$

$$\Rightarrow a^2 + 9a - 5a - 45 = 0$$

$$\Rightarrow (a+9)(a-5) = 0$$

So, either a = 5 or, a = -9

That means, either $b = 2\sqrt{5}$ or, $b = \sqrt{-36}$

The value of $b = \sqrt{-36}$ is not a valid one. So, the b value and its corresponding a value is not acceptable.

Hence, the acceptable value of a is 5 and b is $2\sqrt{5}$

So, the equation of the hyperbola is,

$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 \Rightarrow \frac{x^2}{25} - \frac{y^2}{20} = 1$$
 [Answer]

Question: 16

Solution:

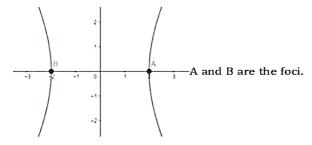
Given: Vertices are $(\pm 2, 0)$ and the eccentricity is 2

Need to find: The equation of the hyperbola.

Let, the equation of the hyperbola be: $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$

Vertices are $(\pm 2, 0)$, that means, a = 2

And also given, the eccentricity, e = 2



$$\Rightarrow \sqrt{1 + \frac{b^2}{a^2}} = 2$$

$$\Rightarrow 1 + \frac{b^2}{a^2} = 4 \text{ [Squaring both sides]}$$

$$\Rightarrow \frac{b^2}{a^2} = 3$$

$$\Rightarrow$$
 b² = 3a² = 3 × 4 = 12 [As a = 2]

So, the equation of the hyperbola is,

$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 \implies \frac{x^2}{4} - \frac{y^2}{12} = 1$$
 [Answer]

Question: 17

Solution:

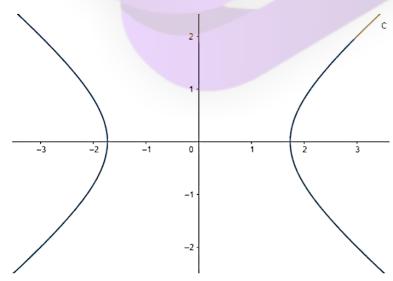
Given: Foci are $(\pm\sqrt{5},0)$, and the eccentricity is

Need to find: The equation of the hyperbola. $\sqrt{\frac{3}{2}}$

Let, the equation of the hyperbola be: $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$

The eccentricity, $e = \sqrt{\frac{5}{3}}$

And also given, foci are $(\pm\sqrt{5},0)$



That means, ae = $\sqrt{5}$

$$\Rightarrow$$
 a = $\frac{\sqrt{5}}{e}$

$$\Rightarrow a = \frac{\sqrt{5}}{\sqrt{\frac{5}{3}}} \text{ [As e = $\sqrt{\frac{5}{3}} \text{]}}$$$

$$\Rightarrow$$
 a = $\sqrt{3}$

We know that,
$$e = \sqrt{1 + \frac{b^2}{a^2}}$$

$$\Rightarrow \sqrt{1 + \frac{b^2}{a^2}} = \sqrt{\frac{5}{3}}$$

$$\Rightarrow 1 + \frac{b^2}{a^2} = \frac{5}{3}$$
 [Squaring both sides]

$$\Rightarrow \frac{b^2}{a^2} = \frac{5}{3} - 1 = \frac{2}{3}$$

$$\Rightarrow b^2 = \frac{2}{3}a^2 = \frac{2}{3} \times 3 = 2 \text{ [As a = } \sqrt{3} \text{]}$$

So, the equation of the hyperbola is,

$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 \implies \frac{x^2}{3} - \frac{y^2}{2} = 1$$
 [Answer]

Question: 18

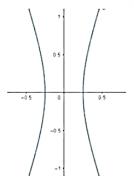
Solution:

Given: The length of latus rectum is 4, and the eccentricity is 3

Need to find: The equation of the hyperbola.

Let, the equation of the hyperbola be: $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$

The length of the latus rectum is 4 units.



And also given, the eccentricity, e = 3

We know that, $e = \sqrt{1 + \frac{b^2}{a^2}}$

Therefore,

$$\Rightarrow \sqrt{1 + \frac{b^2}{a^2}} = 3$$

$$\Rightarrow 1 + \frac{b^2}{a^2} = 9 \text{ [Squaring both sides]}$$

$$\Rightarrow \frac{b^2}{a^2} = 8$$

$$\Rightarrow$$
 b² = 8a²

$$\Rightarrow$$
 2a = 8a² [From (1)]

$$\Rightarrow$$
 a = $\frac{1}{4}$

Therefore,

$$b^2 = 2a = 2 \times \frac{1}{4} = \frac{1}{2}$$

So, the equation of the hyperbola is,

$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 \Rightarrow \frac{x^2}{\frac{1}{16}} - \frac{y^2}{\frac{1}{2}} = 1 \Rightarrow 16x^2 - 2y^2 = 1$$
 [Answer]

Question: 19

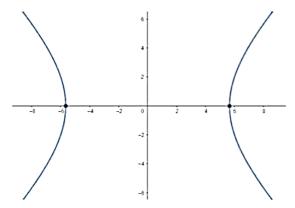
Solution:

Given: Eccentricity is $\sqrt{2}\,$, and the distance between foci is $16\,$

Need to find: The equation of the hyperbola.

Let, the equation of the hyperbola be: $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$

Distance between the foci is 16, i.e., 2ae = 16



And also given, the eccentricity, $e = \sqrt{2}$

Therefore,

$$2a\sqrt{2} = 16$$

$$a = \frac{16}{2\sqrt{2}} = \frac{8}{\sqrt{2}} = 4\sqrt{2}$$
 --- (1)

We know that,
$$e = \sqrt{1 + \frac{b^2}{a^2}}$$

Therefore,

$$\Rightarrow \sqrt{1 + \frac{b^2}{a^2}} = \sqrt{2}$$

$$\Rightarrow 1 + \frac{b^2}{a^2} = 2 \text{ [Squaring both sides]}$$

$$\Rightarrow \frac{b^2}{a^2} = 1$$

$$\Rightarrow$$
 b² = a² = 32 [From (1)]

So, the equation of the hyperbola is,

$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 \Rightarrow \frac{x^2}{32} - \frac{y^2}{32} = 1 \Rightarrow x^2 - y^2 = 32$$
 [Answer]

Question: 20

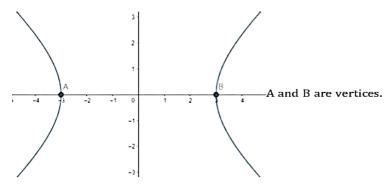
Solution:

Given: Vertices are (0, ± 3) and the eccentricity is $\frac{4}{2}$

Need to find: The equation of the hyperbola and coordinates of foci.

Let, the equation of the hyperbola be: $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$

Vertices are $(\pm 3, 0)$, that means, a = 3



And also given, the eccentricity, $e = \frac{4}{3}$

$$e = \sqrt{1 + \frac{b^2}{a^2}}$$

Therefore,

$$\Rightarrow \sqrt{1 + \frac{b^2}{a^2}} = \frac{4}{3}$$

$$\Rightarrow 1 + \frac{b^2}{a^2} = \frac{16}{9}$$
 [Squaring both sides]

$$\Rightarrow \frac{b^2}{a^2} = \frac{16}{9} - 1 = \frac{7}{9}$$

$$\Rightarrow b^2 = \frac{7}{9}a^2 = \frac{7}{9} \times 9 = 7 \text{ [As a = 3]}$$

So, the equation of the hyperbola is,

$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 \Rightarrow \frac{x^2}{9} - \frac{y^2}{7} = 1$$

Coordinates of the foci = $(\pm ae, 0) = (\pm 4, 0)$ [Answer]

Question: 21

Solution:

Given: Foci are (0, ±13), the conjugate axis is of the length 24

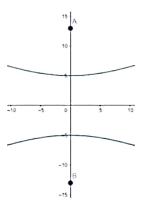
Need to find: The equation of the hyperbola.

Let, the equation of the hyperbola be: $\frac{y^2}{a^2} - \frac{x^2}{b^2} = 1$

The conjugate axis is of the length 24, i.e., 2b = 24

Therefore, b = 12

The foci are given at $(0, \pm 13)$



A and B are the foci.

That means, ae = 13, where e is the eccentricity.

We know that,
$$e = \sqrt{1 + \frac{b^2}{a^2}}$$

Therefore,

$$\Rightarrow a\sqrt{1 + \frac{b^2}{a^2}} = 13$$

$$\Rightarrow a \frac{\sqrt{a^2 + b^2}}{a} = 13$$

$$\Rightarrow a^2 + b^2 = 169$$
 [Squaring both sides]

$$\Rightarrow$$
 a² = 169 - b² = 169 - 144 = 25 [As b = 12]

So, the equation of the hyperbola is,

$$\frac{y^2}{a^2} - \frac{x^2}{b^2} = 1 \Rightarrow \frac{y^2}{25} - \frac{x^2}{144} = 1$$
 [Answer]

Question: 22

Solution:

Given: Foci are (0, ±10) and the length of latus rectum is 9 units

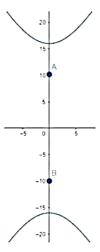
Need to find: The equation of the hyperbola.

Let, the equation of the hyperbola be: $\frac{y^2}{a^2} - \frac{x^2}{b^2} = 1$

The length of the latus rectum is 9 units.

Therefore,
$$\frac{2b^2}{a} = 9 \Rightarrow b^2 = \frac{9}{2}a$$
 ---- (1)

The foci are given at $(0, \pm 10)$



That means, ae = 10, where e is the eccentricity.

We know that,
$$e = \sqrt{1 + \frac{b^2}{a^2}}$$

Therefore,

$$\Rightarrow a\sqrt{1 + \frac{b^2}{a^2}} = 10$$

$$\Rightarrow a \frac{\sqrt{a^2 + b^2}}{a} = 10$$

$$\Rightarrow a^2 + b^2 = 100$$
 [Squaring both sides]

$$\Rightarrow a^2 + \frac{9}{2}a = 100$$
 [From (1)]

$$\Rightarrow 2a^2 + 9a - 200 = 0$$

$$\Rightarrow 2a^2 + 25a - 16a - 200 = 0$$

$$\Rightarrow$$
 $(2a + 25)(a - 16) = 0$

So, either a = 16 or, a =
$$-\frac{25}{2}$$

That means, either
$$b = \sqrt{\frac{9}{2} \times 16} = 6\sqrt{2}$$
 or, $b = \sqrt{-\frac{9 \times 25}{2 \times 2}}$

The value of b = $\sqrt{-\frac{9 \times 25}{2 \times 2}}$ is not a valid one. So, the b value and its corresponding a value is not acceptable.

Hence, the acceptable value of a is 16 and b is $6\sqrt{2}$

So, the equation of the hyperbola is,

$$\frac{y^2}{a^2} - \frac{x^2}{b^2} = 1 \Rightarrow \frac{y^2}{256} - \frac{x^2}{72} = 1$$
 [Answer]

Question: 23

Find the equation

Solution:

Given: Foci at $(0,\pm\sqrt{14})$ and passing through the point P(3, 4)

CLASS24

Need to find: The equation of the hyperbola.

Let, the equation of the hyperbola be: $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$

It passes through the point P(3, 4)

So putting the values of (x, y) we get,

$$\frac{3^2}{a^2} - \frac{4^2}{b^2} = 1 \Rightarrow \frac{9}{a^2} - \frac{16}{b^2} = 1 - - - (1)$$

Foci at
$$(0, \pm \sqrt{14})$$

So, ae =
$$\sqrt{14}$$

We know,
$$e = \sqrt{1 + \frac{b^2}{a^2}}$$

$$\Rightarrow a\sqrt{1 + \frac{b^2}{a^2}} = \sqrt{14}$$

$$\Rightarrow \sqrt{a^2 + b^2} = \sqrt{14}$$

$$\Rightarrow$$
 a $^2+b^2=14$ [Squaring on both sides]

$$\Rightarrow a^2 = 14 - b^2 - (2)$$

Comparing (1) and (2) we get,

$$\frac{9}{14 - b^2} - \frac{16}{b^2} = 1$$

$$\frac{9}{14 - b^2} = 1 + \frac{16}{b^2} = \frac{b^2 + 16}{b^2}$$

$$9b^2 = 14b^2 - b^4 + 224 - 16b^2$$

$$b^4 + 11b^2 - 224 = 0$$

Solving the equations we get,

$$b_1 = \sqrt{\frac{1}{2}(-11 + 3\sqrt{113})}$$

$$\mathbf{b}_2 = -\sqrt{\frac{1}{2}(-11 + 3\sqrt{113})}$$

$$\mathbf{b}_3 = (-i)\sqrt{\frac{1}{2}(11+3\sqrt{113})}$$

$$\mathbf{b_4} = i\sqrt{\frac{1}{2}(11 + 3\sqrt{113})}$$

With the help of any of these values of b we can't find out the equation of the h^{----1}

* This is the only process we can apply in this standard.

