4. Inverse Trigonometric Functions

Exercise 4.1
1 A. Question

Find the principal value of each of the following:

Answer
Let Siﬂ_l (—"?3) =y

Thensiny = (—'?3) = —sin (;5) = sin(—g)

We know that the principal value of sin=? is [—3,3]
22

sin(—g) = —?

Therefore the principal value of gip—! (_ ‘_3) is —E

1 B. Question

Find the principal value of each of the following:

Answer
-

-1 v3y
ecor (- ) =y
cosy =_ ¥3

2

We need to find the value of y.
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We know that the value of cos is negative for the second quadrant and hence the value lies in [0, n].

cosy = - cos (g)
cosy =m—=
y=n-s

Y=?

1 C. Question

Find the principal value of each of the following:

Answer
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1 D. Question

Find the principal value o

Answer

sin ! (ﬁ

= sin™?!

Il
0,
=l
-
N
N
+
4,
=]
1
-

1 E. Question

Find the principal value of each of the following:

A 3T
S coOs—
4

Answer
L so—1 3am
et sin cos ) =y

Thensiny = 3_“2_'(_3_“)2_'2
siny = cos— sin (m—— sm(4)



We know that the principal value of sin=? is [—3,3]
2’2

—sin (g) = cc:sslTTr

Therefore the principal value of sin™ (cosi—") is —E.

1 F. Question

Find the principal value of each of the following:
. _1{ Src}
S tan —
: 4
Answer
Lety = sin™! (tan ?)
Therefore, siny = (tauﬁ) = tan (n + E) = tanZ = 1 = sin (E)
4 4 4 2

We know that the principal value of sin—2 is [73 3]
2 2

rndin(2) = n

Therefore the principal value of sin—! (tans—“) is E
4
2 A. Question
1 |
i

2 N

Find the principal value of each of the following:sin ™
Answer

.11 . N AT 1 i
sinT!>—2sin"'= = sin*=—sin} 2% = 1—(—_)
2 vz 2 Z 2

1
= siu'lﬁ —sin™1(1)

2 B. Question

(

Find the principal value of each of the following:sinfl .”cos. sin”~ —

SR

Answer

sin™! {cos (sin‘I 'Z—E)}
- ot o)

e
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3 A. Question

Find the domain of each of the following functions:
f(x) = sin 1x?

Answer

Domain of gsin~? lies in the interval [-1, 1].

Therefore domain of sin—!x? lies in the interval [-1, 1].
lex?<l

But x2 cannot take negative values,

So,0<x?<l

-l=x<1

Hence domain of gin~1x2 is [-1, 1].

3 B. Question

Find the domain of each of the following functions:
f(x) = sin"’x + sinx

Answer

Domain of sin~? lies in the interval [-1, 1].

lax<l1.

The domain of sin x lies in the interval —3,3]

-
-4

From the above we can see that the domain of sin1x + sinx is the intersection of the domains of simlx and
sin X.

So domain of sin"1x + sinx is [-1, 1].
3 C. Question

Find the domain of each of the following functions:

3

fx) = gin~'yx® -1
Answer

Domain of sin—1 lies in the interval [-1, 1].

Therefore, Domain of gin—1./x2 — 1 lies in the interval [-1, 1].

leyxz-1 <1
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+/1 < x € 442
V2 x< —1andl < x < 2

Domain of gin=14/x2 — 1 is [/2,1] U1, y2}

3 D. Question

Find the domain of each of the following functions:
f(x) = sin"1x + sin"12x

Answer

Domain of sin~1! lies in the interval [-1, 1].

lex <1

Therefore, the domain of sin~—! 2x lies in the interval [_E,E]
22

Sle 2x <1
l( <1
v—'v—'_x_—
2 2

The domain of sin"1x + sin"12x is the intersection of the domains of sin"1x and sin"12x.

So, Domain of sin"1x + sin2x is [_1,3].

4. Question
If sin'x + sin"ty + sin'z + sint = 2m, then find the value of
XX+ v+ 2+ 12
Answer
Range of sin"!x is [_5,5].
e
Give thatsin"lx + sinly + sinlz + simlt = 2n
Each of sin"1x, sin~ly, sin"lz, sin"lt takes value ofg.
So,
x=1lLy=1z=1andt=1.
Hence,
=X +yY+22+ ¢
=1+1+1+1
=4
5. Question
If (sin"1x)2 + (sin"ly)2 + (sin"12)2 = 3/4 n?. Find x2 + y2 + 22

Answer
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Range of sin"1x is [7;,; .

Given that (sin"*x)? + (sin~y)? + (sin~'z)? = % i

Each of sin~'x. sin~'y and sin~!z takes the value ofg.
x=1y=1andz=1.

Hence,

=¥ +y +2

=1+1+1

=3

Exercise 4.2

1. Question

Find the domain of definition of f(x) = cos 1(x2-4).
Answer

Domain of cos—1x lies in the interval [-1, 1].
Therefore, the domain of cos L(x2 - 4) lies in the interval [-1, 1].

-l x?2—-4 <1

3< x% <5

+V3 = x < /5

-5 <x < —V/3andy3 =x = 5

Domain of cos™ (x* = 4) is [~V V3] u [V3.v5].
2. Question

Find the domain of f{x) = cos 12x + sin 1x.
Answer

Domain of cps—1x lies in the interval [-1, 1].
Therefore, the domain of cos™1(2x) lies in the interval [-1, 1].
le2x <1

-1

=X =
2

B =

Domain of cos=1(2x) is [-2 L
cos™1(2x) [2 2].
Domain of sin~—x lies in the interval [-1, 1].

~ Domain of cos~1(2x) + sin~!xlies in the interval [_?1,2]

3. Question

Find the domain of f(x) = cos™! x + cos x.

Answer



Domain of cos~1x lies in the interval [-1, 1]. CLA5524

Domain of cos x lies in the interval [0, 1t] = [0, 3.14]
A Domain of cgs—1x + €os X lies in the interval [-1, 1].

4 A. Question

Find the principal value of each of the following:

“

CO':_I[—— i
.
- J

Answer
We know that for any x e [-1, 1], cos~? represents an angle in [0, ]

cos™1 (7»73) = an angle in [0, 1t] whose cosine is (7»73)
2 7

™
=TM——
6
_sm
_6
A —/3 B 5n
Ccos 2 6

4 B. Question

Find the principal value of each of the following:

_s

Answer

Let cos™? (—i_) = 7

vz

Then, cos y = —é

-cos =
4
cos (n — E)
4

cos (3—")
4
an

We know that the range of the principal value branch of cos™? is [0, t] and cos (—4—) = —

-«
N1|H

Therefore, the principal value of cos™1 (— 13) is 3,
v 4

4 C. Question

Find the principal value of each of the following:

af .oAT
cos {sm—

Answer
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= cos! (sin (TI + g))

V3
2

= cos

For any x € [-1,1], cos~!x represents an angle in [0, 7] whose cosine is x.

. . . 4 -
& Principal value of cgs™1 (sm ?") is ?“.

4 D. Question

Find the principal value of each of the following:

1[ K} ]
cos tan
1

Answer

- i
cos™? (tfm T)

=cos™! (tan G -+ 45))

= cos~(—1)

For any x € [-1, 1], cos~1X represents as an angle in [0, it] whose cosine is x.
cos (—1) =m

~Principal value of cgs—1 (tan 34—") is 1.

5 A. Question

For the principal values, evaluate each of the following:

a1 .
cos™i— + 2sin
o)

1

12| —

Answer

Let cos—? G) =X
Then, cos x = % = cos G)
)3
Let sin—* (i) =y

Then, siny = % = sin (E)



Hence, cgs™? G) + 2sin? G) CI-Ass24

s+ 2()

+

Il
WA
L]

2T
3

~Principal value of cos™1 G) + 2sin? C_) igZT,
a
5 B. Question

For the principal values, evaluate each of the following:

cos™t [l) —2sin~t [—l]
2 2

Answer

Let cos™? G) = X.

Then, cos x =1

Let sin—?

Then, sin

~ Principal value ofcas—? G) — 2sin =

5 C. Question

For the principal values, evaluate each of the following:

sm_l{—%J+—2cos'1[_i§}

Answer

Let Let gin~? (—i) =X

Then, sin x = _% = —sin (_E) = sin (_E)
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. o —/3 _ 5m
+« COS T = —

6
e (-2) ot () = =2+ 2(2)
m 10m

“ 66

- + 107
B 6

9
6
_ 3n
T2

~ Principal value of gjp—2 (_1) + cos~ ! (“3) is 27
2

5 D. Question
For the principal values, evaluate each of the following:

§in

Answer

A 3 _q B
sin~?! (f"—) + cos™! (L)
2 2

mw m N . . .
=-;*z {Since sin~'x — An angle in [_E,E] whose sine is x,
2 2

Similarly, cos~* = An angle in [0, it] whose cosine is x}

T

6

Hence,

. V3 INCEANIE.
sin (—7)—3—1:05 (?) = —g

» Principal value of gjp—1 (_L) + cos~?! (‘_3) is —E
2 2

Exercise 4.3
1 A. Question

Find the principal value of each of the following:



tan”!

i \
7
Answer

We know that, for any x € R, tan—? represent an angle in (1_“_3) whose tangent is x.
2'2
So, tan~? (é) = An angle in (j,f) whose tangent is L
V3 22 va

I
6

1
& tan~? (—) =z

V3 6
Hence, the Principal value of tan=* i?) is ;—r.
J

1 B. Question

Find the principal value of each of the following:

tan™! [ —% ]

Answer

We know that, for any x € R, tan—?! represent an angle in (ﬂ':'ﬁ) whose tangent is x.
2’2

So, tan™* (*%_) = An angle in (i,-“-) whose tangent is — —
V3 2 2 va3

. . 1 R
Hence, Principal value of tan—2 (—3) is ﬁg.
v

1 C. Question

Find the principal value of each of the following:

-1 T
tan CO5—
=

Answer
tan~? (ms E) = tan~(0) [-- COSZE =01
We know that, for any x € R, tan—1 represent an angle in (__’5_5) whose tangent is x.
2 2
&~ tan~i(0) = 0
Hence,
Principle value of tan—? (cos 5) is 0.
2

1 D. Question

CLASS24



Find the principal value of each of the following: CLA5524

y N

27
! 2::05——-J
. 3

tan”

Answer
tan~?! (2 coszi) = tan~! (2 X ;1)
3 2
= tan"(-1)
We know that, for any x € R, tan—1 represent an angle in (_2—",2) whose tangent is x.

T
. —1¢ P
tan~*(—1) 2

Hence, Principle value of tan—1 (2 cosﬂ) is —:—'.
3

2 A. Question

For the principal values, evaluate each of the following:

mn_I{—l) + CDS_I[ —-\—;:-J

Answer
Lettan™(-1) = x
Thentan x = -1

= -tan=
3

= tan (TI‘—E) = tanZ

3
. -1¢__ = —
tan~1(-1) %

Let cos™ (:T%) =y.

-1
Thencosy =—
V2

™
= —cos—
4
r 3
= cos (11—1) = cos—~
© cos-t (—1) _3m
V2 4
Hence, tan*(-1) + COS_]'("';:) = Ef + ES = E‘-F = 325

2 B. Question

For the principal values, evaluate each of the following:

tan ! [”sin{'nlcos‘l j J]

I J



Answer ctAss24

1

Letcos™ —=x

2

COS X = COS (5)
6

Lettan™1(1) = x

Then tan x = 1=:‘_:

1 ™ ™ 2w
Thencosy=—= = —cos=- = CUS( —2) = cos=.
2 3 3 3
_ 1 2 "
% Cos 1(—— = ... (i)
z 3
Again,

Letsin™* (—1 =z
2

Thensinz=—2% — _gin* = sin(—g)
2 6



1 1
-1 -1f__ = sl
tan~ (1) + cos ( 2) + sin ( 2)

_Tm 2m 11 H M
=3 + < + (_E) [from (i), (ii), (iii)]

__ 3m+8nm-2Zm
12

w

_ 3n
4

3 B. Question

Evaluate each of the following:

1
tan'l[ ———]—tan" —3)+tan”!
)

S| ——
2
Answer

tan=1 (_‘%) + tan“"(—\f?_;) + tan~?! (Sin (—2:))

We know that, for any x € R, tan—! represent an angle in (il) whose tangent is x.
20
. -1 (R
tan ( ﬁ@ 6 !

tan~*(—/3) = S~and,

tan‘i(sin (—g)) = tan(—1) [.-sin (—23) = —sin G) = —1]

ud
4
Now, tan"(—v%) + tan~!(—/3) + tan’l(sin (—j“)) becomes,
-+ + @

_ —2m—4m—-3m
12

— —3m

4

4

Therefore the principle value of tan~1 (_i_) + tan~(—/3) + tan~? (sin (_E)) ig =37
v3 2

3 C. Question

Evaluate each of the following:

af . 5w o 137
tan tan— [+ C0s8 "< COos —J
6 6

L J

Answer

CLASS24



tan~?! (tan 5—") + cos™! {cos (ﬂ)}
P 6

Firstly, tanS_"=tan(n_E = —tan® = — X ...()
6 6 6

Also, cos(ﬂf) = cos(zn + 3) = CoS (E) S (ii)
6 6 6 2

From (i) and (ii),

tan™? (tansﬁ—") + cos™? {cos (%')} becomes,

tanhl(--\%) + cos™! (?)

Now,

We know that, for any x € R, tan—® represent an angle in (ilﬂ) whose tangent is x.
2a 2

We know that, for any x € [-1, 1], tan~? represent an angle in (0, ) whose cosine is x.

(@)

& 1 _1 V3 1
Hence, tan (=) + cos™ (£) = T+ T = 0
V3 2 6 6

Therefore, Principal Value of tan=* (tan “O—_) + cos™1 {cos (?)} is 0.
Exercise 4.4

1 A. Question

Find the principal values of each of the following:

sec1{-v2)

Answer

Letsec (-v2) =y

=ssecy =-v2

=- sec(%) =v2

- sefr-3)

= 3n

- o)

The range of principal value of sec™lis [0, ﬂ]—{;—r}
and sec(if) =-V2

- The principal value of sec™}{-v?2) is ‘1—“

1 B. Question

CLASS24



Find the principal values of each of the following:

sec™1(2)
Answer
Letsecl{2) =y
ssecy =2

113
= sec(;)
The range of principal value of seclis [0, n]—{g}
-
And sec(g) =2

. The principal value of sec’1(2) is g
1 C. Question

Find the principal values of each of the following:

-1

R
sec Zsm—J
' 4

Answer
Let us assume 25in34—Tt =0
. 3w
We know smT = —
o 2sinit = 2=
4 V2
. 3T
= 2sin— = 2
4
~. The question becomes sec 1{v2)
Now,
Letsecl{v2) =y
s5ecy=v2

) _
= sec(:) = V2
The range of principal value of sec1is [0, 1t ]—{g}

And sec( ) =2

™
4

-~ The principal value of sec‘1(25in?) is E

1 D. Question
Find the principal values of each of the following:

-1 s - 3
sec ~tan—
4

\

Answer

CLASS24



Let us assume 2tare® = 8 ctAss24

4

We know tani—“ =-1
o 2tan®s = 2(-1)

4
- 2tan’t = -2

4

~ The question converts to sec 1(-2)
Now,
Letsec}{-2) =y

=secy=-2

(g2
sec('n - g)

SEC(Z—W
3

The range of pri

Answer
The Principal val
Lettani(v3 )=y
stany =v3

The range of principal value
And tan{Z) = V3
nd an(s} v

~ The principal value of tan1(v3 ) is E
Now,

Principal value for sec™}{-2)
Letsecl(-2) =z

=secz=-2

1] ]
% 1
L4
0 ]
e
4 AL
wilA
| pelo
N |
N
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The range of principal value of sec1lis [0, n]~{£}
2m
2my — 2
and sec(ﬁl )
Therefore, the principal value of sec’1{-2 ) is -“;—“
~ tan"1V3 -sec"{-2)

2n
3

T_
E

@[3

~tan1v3 - sec’l(-2) = ?

2 B. Question

For the principal values,

Answer

Let,
sin‘l(ﬁ
2
=s5iny =
= -siny =
1
= -5in -
3
As we know sin(-8) =
~—sinZ =sin (i)
3 3
The range of principal value ¢
Therefore, the principal value of sin™!
Let us assume 2tan'—ﬁr =9

We know tan% = -

- The question converts to sec‘l(%)

Now,
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Let sec’l(%) =z
V3

2
3

-ef) - (3

The range of principal value of seclis [0, n],{le}

™ 2

and sec(;) = (E)
Therefore, the principal value of sec'l(ZtanE) is;—t ..... (2)
Ceim-1f—V3Y _ -1 >
-~ Sin (T) 2sec (2tan6)
== 2" (from (1) and (2))

I
= 2w
- 3
=-n
Therefore, the value of Sin‘l(%ﬁ) . Zsec‘l(ztang) is -m.

3 A. Question
Find the domain of
sec! (3x-1)
Answer

The range of sec x is the domain of sec’

X
Now,

The range of sec x is (-, -1]11J [1, »)

~ The domain of a given function would be
3x-1=-land3x-1=1

3x=0and 3x = 2

standxz%

“ The domain of the given function is (—M,O]U[E,m)

3 B. Question

Find the domain of

sec’! x-tanlx

Answer

Domain of sec1x is (-o,-1]J[1,)

Domain of tan"x is R

Union of (1) and (2) will be domain of given function

(-,-11UlL, =) UR



= (-=,-1JU[1,)

-~ The domain of given function is (-=,-1]J[1, ).
1 A. Question

Find the principal values of each of the following:
sec 1(-v2)

Answer

Letsecl{(v2) =y

=secy=-v2

- secG) =v2
e
sec(%i‘)

The range of principal value of sec Lis [0, n]—{%}

amy _ _
and sec(j) = -2
~ The principal value of sec1(-v2) is 34—1

Exercise 4.5

1 A. Question

Find the principal values of each of the following:
cosec 1(-v2)

Answer

cosec! (+v2) =y

= cosecy = -v2

= -cosecy = v2

= -cosec E =2

As we know cosec(-0) = -cosecB

. i3 —T
S—C0seC — = cosec (—)
4 4

The range of principal value of cosec™! is [_?“,g]—{()} and
Y= 2
cosec ( " ) v

Therefore, the principal value of cosec‘l(—\/2) is _T“

1 B. Question
Find the principal values of each of the following:
cosec 1(-2)

Answer
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cosecl-2 =y
= cosecy = -2

= -cosecy =2
m
= -cosec = 2
As we know cosec(-8) = -cosecd

w —m
S —-COSeC — = cosecC (—)
6 6

The range of principal value of cosec™1 is [%“ ]—{D} and

il
'z
M =-2
cosec ( . )
Therefore, the principal value of cosec 1(-2) is_?“.
1 C. Question
Find the principal values of each of the following:

14’ -
cosec” —]

\V3

Answer

Let cosec*l(i,_)- =y
v 3

2
= cosecy = (—,3)
v

- cose(d) = (2)

The range of principal value of cosec? is %3,1:]—{0}

™ =
and cosec(—) = (—,_
3 va

q . 2 .
Therefore, the principal value of cosec‘l(—i) is %
v

1 D. Question

Find the principal values of each of the following:
] 1[ > eas
cosec -CO5—

Answer

_ 2z
cosec! (2cos§)

2
Let us assume 2cos?n =6

2
We know cos? =

1
N L

2cosr‘;—“ = 2(_?1)

- 2co§ =-1

CLASS24



~. The question converts to cosec 1(-1)
Now,

cosecl-1=y

= cosecy = -1

=-cosecy=1

= -Ccosec E =1

As we know cosec(-8) = -cosecH

w -7
. ~COSEeC — = Cosec (—)
2 2
The range of principal value of cosec! is ;—”,g]—{O} and

cosec (%") =-1

—r

Therefore, the principal value of cosec‘l(ZCO%) is?.

2. Question

Find the set of values of cosec 1(v3/2).

Answer

Lety = cosec ! (¥3/2)

We know that,

Domain of y = cosec L x is (- ®, 1] U [1, «]
Butv3/2 <1

Therefore, it can not be a value of y.

Hence, Set of values of cosec 1(v3/2) is a null set.
3 A. Question

For the principal values, evaluate the following:

(L2
\_ﬁ}

s ]
Answer
Let,

L1 =3 =
sin}(52) 7y
=s5iny= 13

2

= -siny = ¥s
2
. k1Y
= -5in —
3
As we know sin{-8) = -sin8

. -sin £ = sin (i)
3 3

CLASS24



r

-v3
2

The range of principal value of sin"l is ('zlg) and sin (_?") =

Therefore, the principal value of Sin’l(%a) is_?Tr (1)

Let,

cosec‘l(:;—':f) =z

- cosecz =43
2

= -cosecz = “2_3

m
= —COsec —
3
As we know cosec(-0) = -cosect

m
" ~cosec 7 = cosec (?)

The range of principal value of cosec™! is is [‘T"E]—{O} and

2
3

cosec (”—") —
3 2

Therefore, the principal value of cosec‘l(’_"_sj is ;—T a(2)

From (1) and (2) we get

B,
3 3
-2

3 B. Question

For the principal values, evaluate the following:
sec™ (v2) +2cosec™ (2
Answer

Letsecl{-v2) =y

=seCcy=-v2

- sec(z) =v2

sec(-n - 3)
4

sec| 3—“)
4

The range of principal value of sec1is [0, n]—{%}

and sec(?) =-v2.

Let,

cosecl-v2 =z
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= cosecz=-v2

= -Cosecz=v2
= -cosec E =v2
As we know cosec(-8) = -cosecd
n -7
S -COSec — = cosec (~—)
4 4
The range of principal value of cosec ! is '?",%']7{0} and
—m\ _
cosec (T) = -v2
Therefore, the principal value of cosec 1{-v2) is an

cosecl-v2 =y
= cosecy = -v2

= -Cosecy = v2

= —Cosec % =2

As we know cosec(-8) = -cosecB

. — E = _—“

*+ -COsec — = cosec ( Z )

The range of principal value of cosec™ is [}“,2]—{0} and
-y _

cosec (-4—) = V2

Therefore, the principal value of cosec‘l(—V’Z) is _Tn

From (1) and (2) we get

3n -
= — » —
4+2 4

_3m  -2m
4 4
_T[
4

3 C. Question

For the principal values, evaluate the following:

sin™! [cos{cosec" (=2 )]]

Answer

First of all we need to find the principal value for cosec™1(-2)
Let,

cosecl-2=y

= cosecy = -2

= -cosecy =2

o
= -C0seC " =2
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As we know cosec(-8) = -cosecB

. n —T
S -C0OSeC — = Cosec (—-)
6 6

The range of principal value of cosec! is [‘7"_2]—{0} and

j = —2
cosecC ( P )
Therefore, the principal value of cosec™1{-2) is_ﬁ—“.
~ Now, the question changes to
P | j
Sin ‘[cos A 1
Cos(-8) = cos(8)
" we can write the above expression as

o1 3
Sin [cosﬁ]

Let,
in-1fv3Y =
s 1(2)
=55iny=£
2

-

= 5N -
3

The range of principal value of sin ! is (?g) and sin (E)

Therefore, the principal value of Sin‘l(!_;) is

WA

Hence, the principal value of the given equation isg !

3 D. Question

For the principal values, evaluate the following:
} Iz
cosec l[Etan?

Answer

We can write,
I:anﬁ = tan (2mn - E)
[ 6

tan(2n-9)

tan{-8)

-tanB

lin s
tanT becomes —tang

his 1
-tan- = —
6 V3
im_ 2

= 2tan— -
P 7

w'

PJ1
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H 2
~ The question converts to cosec‘l(—rs)
Let -1 i) =

et cosec (ﬁ y

2
= Cosecy = (_ﬁ)
v

- couc(3) - (3

The range of principal value of cosec™! is [%"%]—{D}

and cosec(g) = (%)

Therefore, the principal value of cosec‘l(%) is %
v

Exercise 4.6

1 A. Question

Find the principal values of each of the following:
cot }{-v3)

Answer

Let cot 1 (-V3) =y

= coty = -3
= - cot(%) =v3
- cafn—3)

cof)

The range of principal value of cotLis (0, m)

and cot(%") =-v3

~ The principal value of cot L{(-v3) is ==
o
1 B. Question
Find the principal values of each of the following:
cot™1{v3)
Answer
Let cot L{v3) =y
= coty =v3
f— m =
= cot(;) E
The range of principal value of cot™Lis (0, )

and cot(g) =v3

- The principal value of cot"1(v3) is%
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1 C. Question

Find the principal values of each of the following:

-1
cot

-1 ]
\/;
Answer

Let cot 1(32) = v
v3

-1
=coty = 7
=- cot(ﬂ) =
3 v3
= cot( _E)
T3

2w
cot(-;)
The range of principal value of cotLis (0, n)

and cot(z—") —g=t
3 V3

. The principal value of cot’l(:.—;) is -:;3

1 D. Question

Find the principal values of each of the following:

| 3T
cot tan
4

Answer

The value of

tan®® = -1
4

~. The guestion becomes cot-1(-1)
Let cot™l(-1) =y

=coty =-1

- cotG) =1

cofn )

co(2)

The range of principal value of cot1lis (0, m)

and cot(%“) =-1

. The principal value of cot‘lttan%“) is ?

2. Question

Find the domain of f(x) = cotx + cot! x.
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Answer

Now the domain of cotx isR

While the domain of cot1x is [0,1 ]

~. The union of these two will give the domain of f(x)
=R U [0m]

= [0,n]

~ The domain of f(x) is [0,1]

3 A. Question

Evaluate each of the following:

a1 - af
cot™t —— —cosec 1(—2)'—sec ]L

3

&J (]
e

Answer

Let cot‘ltz_,:) =y
=coty = :—;

= _ )
- COt(s) yF =
= COt(]'[ —E)

_ 2m

= cot(?)

The range of principal value of cotlis (0, )
2w -1

and cot(?) = =

~ The principal value of cot‘lt;—;) is ? (1)

Let,

cosec1-2=z

=cosecz=-2

= -cosecz=2
m
= -cosec _ = 2
As we know cosec(-8) = -cosecO
. w_ -
*+ ~COsec = cosec (T)
The range of principal value of cosec is [_?“,g]—{O} and
- _
cosec (?) =-2
Therefore, the principal value of cosec 1{-2) is%"...(Z)

Let sec‘l(%) =

v

CLASS24



2
= 5ecw =(—:)
V3

~(?) = (2

The range of principal value of seclis [0, n]—{g}

and sec(g) = (%)

Therefore, the principal value of sec’lté) is E...(B)
V3

From (1), (2) and (3) we can write the above equation as

_2n -m
3 [ 3
_ 4m+m+2n
6
7n

Y
3 B. Question

Evaluate each of the following:

ot

Answer

cotL 2cos£sin

For finding the solution we first of need to find the principal value of

s (2

Let,
in (2 ¥
#siny:‘_'ri
2
. ™
=’S|n;

The range of principal value of sin! is (%“E) and sin (g)
Therefore, the principal value of Sin‘l(%ﬁ) is;—r

~ The above equation changes to cot‘1(2cos§)

Now we need to find the value of 2cos§

nocost =
3

SR

= 2cost =1x2
3 2
m

= 2cos] = 1

Now the equation simplification to cot1(1)
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Letcot (1) = y
=scoty=1
= cot{™) =
= cot(4) 1
The range of principal value of cot Lis (0, m)
my _
and cot(;) =1
~ The principal value of cot*1(2cos(5in’1(‘z—§))) is;
3 C. Question

Evaluate each of the following:

1 2"
cosec’ |
\

V3,

+2cot™ (=1

Answer

Now first of the principal value of

(2
cosec (\.@)
-1 2) —
Let cosec (—,_) =y
V3

2
= cosecy = (—,3)
v

- cose(?) = (2)

The range of principal value of cosec is [_2—“,%]—{0}

and cosec(g) = (i

V3
Therefore, the principal value of cosec‘l(%) is =..(1)

Now, the value of cot1(-1)
Let cot1({-1) = y

=scoty=-1

--cofd) -

- cofx-3)

- 2]

The range of principal value of cot tis (0, m)

3wy _ _
and cot(T) =-1
Therefore, the principal value of cot 1{-1) isgf L (2)

From (1) and (2) we can write the given equation as
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3 D. Question

Evaluate each of the following:

oo ool

Answer

-1ohy o
Let tan (\{3) =y

=:tany=}—;

o) -

- (-3

. The princip

I
1
[a)
Q

1l
o
Q

I
[a]
[=]
S
I

~ The principal value of cc:t‘lt‘if3
sin— = -1

2
~tan1(-1)

Lettanl(-1) = w

s>tanw=-1

= utan(f) =1

)

». The principal value of tan"1{-1) is ?...(3)

From(1),(2) and (3) we get
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Exercise 4.7
1 A. Question

Evaluate each of the following:

Loaf . T
s s —
6

Answer

The value of sinE isi

. The question becomes si

Let sin‘le} =

sinL{sin x)

Provided x ¢

S we can write sin

1 B. Question

Evaluate each of the follo

. af . Tm
s Sl —
6

Answer
The value of sin = is

6 2
-~ The question becomes sin‘l(‘?‘)
Let sin*l(%} =y
= -siny =

= nsin(E) =1
6 2

As, -sin(8) is sin(-0).

B



() - (2)
The range of principal value of sin"! is (_Z—ng) and sin (_—6") =

. . Tm, . —
Therefore, the value of sm‘l(sm?‘t) |s?".

1 C. Question

Evaluate each of the following:
il 53]
Sin [ S —

6
Answer
The value of sin-" is

6 2
. The question becomes sin‘l(z)-
Let sinl{1) =
etsin (3} 7y

=s5iny=

- sn(3)

The range of principal value of sin! is [:—“%] and sin (3) = é

(=}

MR

1
2

- . 5 il
Therefore, the value of sin 1(sm?ﬂ) |sg.

1 D. Question

Evaluate each of the following:

. .1(. . 137‘!]
S| sl ——

\ ,
Answer

We can write (sin?) as sin(zT[ —g)

As we know sin{2m -8) = sin{-8 )

So sin(zH —g) can be written as sin(g)
». The equation becomes sin‘ltsing)

As sinl{sin x) = x

Provided x € _?"-’23]

. we can write sin‘l(sing) =I;-

1 E. Question

Evaluate each of the following:
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. .1{ , ITTEJ
Sin S11
S
Answer
We can write (sin’.?) as sin(z +£)
8 n e

As we know sin{2m +8) = sin(@ )

So sin(zn +E) can be written as sin(E)
=3 B
+ The equation becomes sin‘ltsing)
As sinL(sin x) = x
Provided X € 1,3]
2'2

", we can write sin’l(sing) =E

1 F. Question
Evaluate each of the following:

sin”? {[ sin— 1;’-{]}

Answer

As we know sin(-0) is -sin(B )
~ We can write (sin"2’™ as —sin(ﬂ)
8 8
_cinf I o
Now sm(T) = 5|n(2n+3)

As we know sin(2m +8) = sin(8 )

So —sin(zH i E) can be written as —sin(i)
a =]

. LA . -
And —sm() = sm(?)
The equation becomes sin‘l(sin%")

As sin"(sin x) = x

Provided x € ['?“g]

" we can write sin‘l(sin;—“) = _?"
1 G. Question

Evaluate each of the following:
sin~1{sin3)

Answer

sin~{sin x) = x

Provided x € [‘?"g] =~ [-1.57,1.57]

CLASS24



And in our equation x is 3 which does not lie in the above range.

We know sin[n - x] = sin[x]
~osin{n - 3) = sin(3)

Al -3 bel in]= X
so -3 belongs in 2,2]

~ sin"}{sin3) = -3

1 H. Question

Evaluate each of the following:
sin~l(sind)

Answer

sin‘ltsin X)=x

Provided x € '_“,E] = [-1.57,1.57]
22

And in our equation x is 4 which does not lie in the above range.

We know sin[n - x] = sin[-x]
~osin{n - 4) = sin{-4)

Also -4 belongs in['?", g]
~sinlsin4) =mn- 4

1 I. Question

Evaluate each of the following:
sinL (sin12)

Answer

sin~I({sin x) = x

»

Provided x ¢ [=% E] =[-1.57,1.57]
202

And in our equation x is 4 which does not lie in the above range.

We know sin[2nm - x] = sin[-x]
sosin{2nm - 12) = sin(-12)

Heren =2

Also 2m-12 belongs |n[‘2_“§]
~sinl(sinl2) = 2n - 12

1 ). Question

Evaluate each of the following:
sin"! (sin 2)

Answer

sin~L{sin x) = x

Provided x & i,E] =~ [-1.57,1.57]
22
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And in our equation x is 3 which does not lie in the above range.

We know sin[n - x] = sin[x]
sosin{n - 2) = sin(2)

Al -2 bel in]== X
so n-2 belongs in 2,2]

~ sin"sin2) = n-2
2 A. Question

Evaluate each of the following:

-/ {1 ]1

COS < COS — |
L4
Answer

As cos(-0) is cos(8 )

e () = cos(2)

Now,
cos (E) =/
4 v2
r 1
~ The question becomes cos‘i(E)

Let cos‘l(é} =y

1

=cosy ==
= cos(E) =+
4 va2

1

-

The range of principal value of cos is [0,n] and cos G) =
v

Therefore, the value of cos L(cos (_—“)) isZ.
4 4
2 B. Question
Evaluate each of the following:
_1[ s J
cos cos—
\ 4

Answer

. -1
The value of cos (5—“) is—
4 V2

Now,

. The question becomes cos‘ltz—;)
-1\ =
Let cos (E) y

1
=cosy =1

= —cos(E) =1
4 V2
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= cos(n—f) -2
4 V2

= cos(i“) =1
4 v2

The range of principal value of cos™! is [0,n] and cos (37") - ‘_:
y
Therefore, the value of cos1({cos (sf)) is?.

2 C. Question

Evaluate each of the following:

af 4= ]
COs LCO-‘)T

Answer

=1
The value of cos ("3»’1) |s?

Now,

~ The question becomes cos‘l(;—l)
Let cos‘l('?l) Ty
=Cosy = _2—1
hisd 1
—cos(;) =3

cos(n L E) -
3

2 1
3 2

Sl

The range of principal value of cos™! is [0,n] and cos (:T") —

|
ap

Therefore, the value of cosL(cos ("?”)) iszg—“.
2 D. Question

Evaluate each of the following:

_1[ 137
Cos COsS——
6

Answer

The value of cos (E—'T) is ¥3
6 2

Now,

- The question becomes cos‘l("'z_?')

Let cos‘l({ﬁ) =y

scosy =243
2
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= cos(ﬁ) = ‘?3 CLA5524

The range of principal value of cos ™ is [0,n] and cos (E) =

Therefore, the value of cos '(cos (%)) is .
2 E. Question

Evaluate each of the following:

cos{cos 3)

Answer

As cosl{cos x) = x

Provided x € [0,m]

. we can write cos™l(cos 3) as 3.

2 F. Question

Evaluate each of the following:

cos1{cos 4)

Answer

cos1{cos X) = X

Provided x € [0.n] = [0,3.14]

And in our equation x is 4 which does not lie in the above range.
We know cos[2n - x] = cos[x]

s cos(2n - 4) = cos(4)

Also 2n-4 belongs in [0,m]

- cos Y{cos 4) = 2n-4

2 G. Question

Evaluate each of the following:

o

cos +(cos 5)

Answer

cos{cos x) = x

Provided x € [0,m] = [0,3.14]

And in our equation x is 5 which does not lie in the above range.
We know cos[2m - x] = cos[x]

. cos(2m - 5) = cos(5)

Also 2mn-5 belongs in [0,m]

~ cos Hcos 5) = 2n-5

2 H. Question

Evaluate each of the following:

cos H{cos 12)



Answer CLAssz4

cos(cos x) = x

Provided x ¢ [0,n] = [0,3.14]

And in our equation x is 4 which does not lie in the above range.
We know cos[2nn - x] = cos[x]

~ocos{Znm - 12) = cos(12)

Here n = 2.

Also 4n-12 belongs in [0,1]

. cos Lcos 12) = 4n-12

3 A. Question

Evaluate each of the following:

tml_l[ tan '—LJ
. 3

Answer

As, tanL(tan x) = x

Provided x € (_—“,E)
22

= tan*l(tang)

hid
3
3 B. Question

Evaluate each of the following:

_tf 6w
tan | tan —

!

Answer

Tanf’_’—“ can be written as tan(n —T—;)
tan(rr —E) = -tan_
7 7

~As, tanl{tan x) = x
Provided x € (;“,E)
22

-1 6m, W
tan (tan7)— -

3 C. Question

Evaluate each of the following:

-1 ‘ /T
tan tan —
‘ 6

Answer



7 1
The value of tan— = —+
) V3

- The question becomes tan‘l(%)
v

Let,

()=

Y

vaany =(2)

¥

() - (3

The range of the principal value of tar! is (iﬁ) and tan(g)
7a TEd

=~ The value of tan‘l(tanl—“) is E.

3 D. Question

Evaluate each of the following:

-1 om
tan tan

Answer

The value of tan":—tr =1

~ The question becomes tan"11
Let,

tan i1 =y

stany=1

= tan(g) =1

The range of the principal value of tar! is (
2

- The value of tan’l(tan?) is g.
3 E. Question

Evaluate each of the following:
tan-! (tan 1)

Answer

As, tan‘ittan X)=x

Provided x € ('?“g)

= tan 1{tan1)

=1

3 F. Question

Evaluate each of the following:

2) and tan(.‘i) =1,
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tan! (tan 2)
Answer
As, tan~l({tan x) = x

Provided x € (_?“E)

Here our x is 2 which does not belong to our range
We know tan{m -8) = -tan{©)

s tan(@ -n ) = tan(®)

s tan(2-n) = tan(2)

Now 2-m is in the given range

~tanl (tan 2) = 21

3 G. Question

Evaluate each of the following:

tan! (tan 4)

Answer

As, tan{tan x) = x

Provided x € (? g)

Here our x is 4 which does not belong to our range
We know tan(n -8) = -tan(8)

S tan(8 -m ) = tan(8)

s tan(d4-n ) = tan(4)

Now 4-m is in the given range

~tan! (tan 4) = 4

3 H. Question

Evaluate each of the following:

tan~! (tan 12)

Answer

As, tan{tan x) = x

Provided x € (_?“'E—T)

Here our x is 12 which does not belong to our range
We know tan(nm -8) = -tan(8)

Stan(e -2nm ) = tan(9)

Heren=4

stan(l2-4n) = tan(12)

Now 12-4n is in the given range

s tan™! (tan 12) = 12-4n.
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4 A. Question CLASSZ4

Evaluate each of the following:

Tr\
SSC——J

-1
Sec

Answer
As secl{sec x) = x

Provided x € [0.11]—{2}

. ™
. we can write sec‘lsec(g) as 7.

4 B. Question

Evaluate each of the following:

1 2n
sec” [sec ]

Answer
As secl(sec x) = x

Provided x € [0.11]—{%}
- We can write sec*lsec(z?") as 23—"

4 C. Question

Evaluate each of the following:

Sn
sec—
4

Answer

sec”!

The value of sec(?) is -v2.

~ The question becomes sec™1(-v2).
Let secl(-v2) =y

s secy=-v2

- sec(g) =2
scn-2)

SEC(EE)
4

The range of principal value of seclis [0, n]f{g}

3my _ _
and sec(T) =-V2
=~ The principal value of sec’1{-v2) is ?;—“

4 D. Question



Evaluate each of the following: CLASSZ4

-1 / /T
sec SCCT

Answer

The value of sec( : ) is 2

Letsecl{2) =y

=secy=2
T
= sec(;)
The range of principal value of seclis [0, n]—{-g}

And sec(g) =2

~ The principal value of sec’l(sec(?)) is g

4 E. Question

Evaluate each of the following:

1 ks
5¢C t SeC—
\ 3

Answer
sec( ) can be written as sec(zn s 3)
5 5
Also, we know sec(2n -8 ) = sec(8)
. my _ b
sc{an—2) = see)
. Now the given equation can be written as sec’lsec(g)
2
As secl(sec x) = x

Provided x € [O.r[]—{g}

. we can write sec*lsec(ﬂ) as
5

w A

4 F. Question

Evaluate each of the following:

o7

sec -l-sec] 3 JJ

Answer

As sec{-8) is sec(B)

SEC( ) = SeC( )

The value of sec( ) is 2.



Let sec (2) = y ctAss24

=ssecy =2
T,

= sec(3)
The range of principal value of secLis [0, n]-{g}
Al I} =2

nd sec(s)
. -1 =Wy T
- The value of sec (sec(T)) is -

4 G. Question

Evaluate each of the following:

Answer

As sec{-9) is sec{B)

The range of principal
and sec 3—“} =-V2.
a

Therefore, the value of seclse

4 H. Question

Evaluate each of the following:

-1 25w
seC | sec—

6
Answer
25w 2
sec(*y") = (E)
. The guestion converts to sec*l(i)
V3

Now,



Let sec’l(é) =z CLASS24

Va

2
=secz= (—_)
v

- ofs) = (3

The range of principal value of sec lis [0, n]—{g}

and sec(;—') = (%)

Therefore, the value of sec‘lsec(%r) is g

5 A. Question

Evaluate each of the following:
-1 ( T
cosec cosecz

Answer
cosec l{cosec x) = x
Provided x € :2'“1;' -{0}

. we can write cosec‘l(cosecG) = E

5 B. Question

Evaluate each of the following:
) R
cosec COSECTJ

Answer
cosec {cosec x) = x

Provided x € |== E]7{0}

22

. Pt 3 3
. we can write cosec l(cosec(T“) - T“.

5 C. Question

Evaluate each of the following:

-1 . 6%
cosec cosec—
\ 5

Answer

6 .
cosec(?“) can be written as cosec(n +§)

cosec(n + E) = —cosec(%)
=]

Also,

-cosec(B) = cosec(-0)
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= —cosec(f) = cosec(_—")
5 5
Now the question becomes cosec‘l(cosec(__—"))
=1

cosec(cosec x) = x
Provided x € -—“,3]—{0}
22

" we can write cosec‘l(cosec(¥) = _?“'
El

5 D. Question

Evaluate each of the following:

-1 ( IIEJ
cosec [COS:’:C 5

Answer

The value of cosec(%r) =-2

Let,

cosec1l-2=y

= cosecy = -2

= -cosecy = 2

= -cosec == 2
[

As we know cosec(-6) = -cosecB
m —m

S —-COSeC — = Cosec (—)
6 6

The range of principal value of cosec™! is _T”,f]—{[)} and

cosec (Lﬂ) =-2
6
-1 IRy
Therefore, the value of cosec *(cosec = )is -

5 E. Question

Evaluate each of the following:
_1[ 13w }
cosec cosec?

Answer

The value of cosec(%r) is 2.

- The question becomes cosec™1(2)
Let,
cosec’(2) =y

Socosecy = 2



= cosec(g) =2

The range of principal value of cosecl is [;—“,g]f{O} and

cosec (g) =2

Therefore, the value of cosec‘ltcosec(%“)) is E.
5 F. Question
Evaluate each of the following:
- ST
cosec ! [COS' CC!( -_ V
U]

Answer

As we know cosec(-0) = -cosecB

cosec(i") = —cosec(ﬁ)
4 4
o . m
—cosec(j) can be written as —cosec(zH +:)

Also,

cosec(2n+08) = cosecH

. ) . _ E

e —cosec(zn +;) = cosec(ﬁ)

As we know -cosec(0) = cosec(-6)

—cosec(E) = cosec('—“)
4 4

Now the question becomes cosec‘ltcosec(f_—”))

&

cosec1(cosec x) = x

Provided x e == Z|-{0}
2’2
S we can write cosec‘l(cosec('T“) = —.
6 A. Question
Evaluate each of the following:

1 TE‘:
cot cot— |

3)

Answer
cotl{cot x) = x

Provided x € (0,m)

~ cotcotD) =T,
3 3
6 B. Question

Evaluate each of the following:

CLASS24



CLASS24

cot™

4.'!]
cot—
\ 3

Answer

c.:)tigE can be written as COt(T[ +§)

we know cot(n +8 ) = cot(0)

. my _ L

. cot(n-i-;) = cot(g)

Now the question becomes cot’l(cotg)
cotl{cot x) = x

Provided x € (0,m)

g -1 4_1-[ =E

~ocot (col:3 ) .

6 C. Question

Evaluate each of the following:
-1 ( h4
cot cot—
41
Answer
The value of coti—" is 1.
. The question becomes cot™1(1).

Let cot1(1) = y

=coty =1

= =

= cot(4) 1

The range of principal value of cot Lis (0, m)

and cot(g) =1

:. The value of cot‘ltcot?) is 3
6 D. Question
Evaluate each of the following:

_1[’ 197 ]
cot cot—
y 6

Answer
The value of cot% is V3.
~ The guestion becomes cot1(v3).

Let cotL{(v3) =y

= coty =v3



= cot{Z) = v3 CLASS24

The range of principal value of cotLis (0, T)
m —
and cot(;) =3

- The principal value of cot‘ltcot?) is E.

6 E. Question

Evaluate each of the following:

o |

s cot g
J

L

Answer

87

cot

cot(-8) is -cot(B)
~ The equation given above becomes cot‘lt—cotZ—“)
cots'—rr = _—1
3 V3
Therefore
Letcot (=) = y
\"3

1
=coty =T3
¥

= cot(E) |
3 v3

The range of principal value of cot Lis (0, m)

m i
and cot(g) G

~ The value of cot’l(cot?) isg.

6 F. Question
Evaluate each of the following:

cot™ -(co‘f[zﬂ}1
.4

| J

Answer

cot(-8) is -cot(8)

~ The equation given above becomes cot’ltfcot:ﬂ)

ot = 1.
4

- —cot2l = -1,

4
- we get cot1({-1)
Let cot1(-1) = y

=coty =-1



- cot(ﬂ) =1 CLASSZ4
(=)

(2

The range of principal value of cotlis (0, 1)

and cot(%") =-1

~ The value of cot‘Hcot?) is 34—“

7 A. Question

Write each of the following in the simplest form:

Al
[Vx*-a*)

Answer

cot

|xX|>a

Let us assume x = a sect
8 =sec %, (1)
a

S we can write
Cot’l[,_;_}
vaZsec? B—a®
- COt_l{-,;—..]
ya“(sec®@-1)
= Cot_l[,;—]
Jya*tan®@

=Cot’1{ = }
atan®

Corl[L}

tanB

cotl({cotd )
= 0.

From 1 we get the given equation simplification to sec‘lf §

7 B. Question

Write each of the following in the simplest form:

tan'l-{x —f1+ X" ! xeR

[ )
Answer
Put x = tan®

=8 =tanl{x)

tan ' {tan® +/1+tan26}



= tan"1{tan® +\secZ@} CLASSZ4

= tan"1{tan® +secB }

=tan‘1{ﬂ+ 1 }

cosB  cosB

= ta n‘l{:‘_.ffiﬂ?_}

cosB

. .8 e 8 . .8
5inB =2 x sinZ X cos;,cose = coszi—sur;

. B 8 . .0 -8
_ sin—Xcos—+sin“—+cos"—
1 2xsinzx = s "2
= 1a|‘|

-8 .8
2 _gin2=
cos*o—sin®2

. 8 &2
- tal'l_l (sm?rcas:)
:

- g . g
usz—smzj X(CDSE'l-SIIIE

Dividing by cosg we get,

sing cas—g
—
_ tal'lfl cusg :osg

- sin-g cosg
8 2]
CUSE CDSE
8
i 1+ta.u;
= tan L e
l—tan:

_ L) taull-tang
= tan _‘Tz_'ﬂ
1 —ta.u:ta.u:

tan x+t
tan(x+y) = JSEREY

1-tanxtany

- (o (2+)

=T
_4+

N @

From 1 we get

m, tanlx

+
2

L

-1
Therefore, the simplification of given equation is E +'i‘2——x-

7 C. Question

Write each of the following in the simplest form:

tfuf‘-'\,ll—x: —x{-.xeR

{ _

Answer
Put x = tan®

=8 = tanl{x)

tan* {yT+tanZ6-tand }



= tan‘l{wm—tane } CLASSZ4

= tan‘l{sece -tanB }

= tal'l_l{i B sinﬁ}

cosB  cosB

= ta n‘l{f:.fiie_}

cosB

. .. B 2] 8 . 28
SinG=2x sm;x COS;,COSB = COSZE— Sll]";

-8 - ] 2]
1 sin“:-{-cos"g—zxsin:xcos:
= tan 5

8
22 _gin2Z
cos*z—sin®2

_ tal'l_lg (sing—cosg)z ]

: g 3
cosz—su‘lsj x(cnﬁi-t-smz

_ 1 (sing—cosg)
=l —H—g-
cos—+sin-

Dividing by cosg we get

(smg casg
| cosg ccsg

= tan
sjng cusg
9' =]
CDSE CDSE

_ ta |'|7 1 1 —ta.ng
1 +ta.n:

_ L) lau“—tang
= tan _in_.g
1 +ta.u:ta.u:

tanx-tany

tan(x-y) = l+tanxtany
_ B
= tan*(tan (E— ;))
—T_*
4 2

From 1 we get

—1

T _ tan” " x,
4 2
'
Therefore, the simplification of given equation is T — 22 X
4 2

7 D. Question

Write each of the following in the simplest form:

-1 (\1’:1}\ ~0

Answer

tan

Assume x = tan®



_ tan—l{mwl CLASS24

Cos8=1-2 sinzg and sin® =2 x singx-cosg

. -8
=1-cosd =2 smzz

Therefore, t 2n equation is

2
7 E. Question \\

Write each of the fo

Nl +1
tan 2T T lg s
X

Answer

Assume x = tan®

- ta n‘l{“ﬂ 1+tan=a+1}

tanf

I
———
:

tan- 1§y secze-!-l]




CosB8 =2 coszg -1 andsind =2 x singx cosg

=1+cosB=2 coszg

colz2) - (-
= tan‘l(tan_z—e)

But 8 = tan'lx.

. —B —tan 1x

2

= ta n_1 'a(l—cos 8)
a(1+cos B}

- ta n_1 (1—cos8)
(1+cosB}

Rationalising it

tan-1 J(l—cuse)x J(l—cosﬂ}
(1—cosB}

(1+cosB)

- ta n-1 (1—cos8)2

(1—cos® B8}

=:'tar.l—l (1—cos8)2
‘\J sin?8

1-cos8

- tan {12502
sin B

Cos8=1-2 sinzg and sinB =2 xsmgx cosg

=1-cosd =2 sinzg

CLASS24




tan 1 2 sinzg
= P |
2xsin-xcosz

= tan’l(tang)
=8

2
But® = cos‘lz

. The given equation simplification to cos‘lz .

7 G. Question

Write each of the following in the simplest form:

S s )

tan = =/.—d <X <4
_\'.‘J

L da r~va
Answer

Assume x = a sin®

- tan‘l[ asin® }

a+ya’—a®sin® 8

tal'l_l{ asin@ }

a+a?(1-5inZ8 )

n-1 asin@
a+a*(cos®8 )

I'I_l{ asin@ }
a+acosB

= ta n’l{ﬂ}

1+cosB

[
o

[
)

zxsinexcasg
— a1 ZXcos
= tan - - TP
cos“; +sin“+cos 7 -sin®;
. 8 [2)
tarrl 2xsinsXcosz
= —-Q
2cosYg

-
=mw{ﬂﬁ

cosg

= tan‘l(tang)

]
N @

But® = sin‘l(f)

~ The given equation simplification to sin*l(f) .
a

7 H. Question

8 _ i 28 : .8 8 8, . 28
Cos 8 = cos’. - sin’- and sinB = 2 X sin=X cos>,cos’> + sin’> = 1

2

CLASS24



Write each of the following in the simplest form:

sin™! ‘[.‘; +y1ox] l

2

Answer

1 1
—<X<—=
2

NA

Assume x = sinf

sin-1 sinB+y/1-sin* @
vz

=

. ,1[551‘1 9+cose]
sin” {————
V2

. 1 ., 1
sin 1{¢sm9 + —=cos 9}
V2 va

Sin'l[cos%ine + sin%cos 6}
sin(A+B) = sinAcosB+cosAsinB
~. The above expression can be written as
= sin"fsin? +6}
=>+8
4
But 8 = simlx
- the above expression becomes E +sin~1x.

1

The given equation simplification to 3— +sin™ " x.

7 1. Question

Write each of the following in the simplest form:

sin ™ —[———1 M Jl__\
| &

Answer

Oi_x-:il

Put x = sin26
And we know sin?8 +cos?8 = 1

By putting these in above equation, we get

_—

J \V5in?8+cosB-sin 28

_1] Vsin?B+cos?B+sin 26+

2

= sin”

1|,/ (sin B+cosBJ~+\, '(sinB—cos8)* }

1
[ny

in

-1f2

sin

1[5111 B+cosB+sin 9—(‘059}

sin"1(sin 8)

CLASS24
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But® = isin‘lx
~ The given equation simplification to isin*lx.

7 ). Question

Write each of the following in the simplest form:

. o J1-x
sin™'{ 2tan”t [—=

1+x
Answer

Putx =cos©

5in’1(2tan’1( lf""’a))

1+cos@

-

-cosh =2 sinzg and 1

sin"}(2tan!

Il
Joi
:,I
—
—
N
~+

I
@,
:I
i
P
@
=

But® = cos 1x
“ The above expressio
Exercise 4.8

1 A. Question

Evaluate each of the following
: ( a1 7)
S| s —
25
Answer

7
Let ¢in~' =
sin >s y

-

=5y =

2] -

Where y e [O_

12] A
| |



a7
= sin| sin” —
25

; . CLASS24
]: — substituting y = sin™t —
25 23

1 B. Question

Evaluate each of the following

( _15J
sin| cos™ —
13

Answer

i
Let cos_l; =
13 Y

5 i
= cosy =— where ye| 0.—
T Y { 2

To find : sm(cos_li] —
13

As sin?d + cos?8 =

[ ( 5 J 12
= S111| COS —_— = —
13)1 13

1 C. Question

Evaluate each of the following

) [ 1 24}
sm| tan  —
7

Answer



24
Let tan™! == y

24
= tany =7 where y | 0,

193

.
To find : sm[tan'l"?_1r J =siny

As 1 + cot?8 = cosec?6
=1 + cot?y = cosecly

Putting values

[ 7 J‘H -l
=1+ — | =cosec’y
24

Answer

17
Let gec_l =
3 y

17 T
= =__wh —
secy s where y & [02:‘

-
Tofind : siu[s;e::'I %) =siny

Now, cosy =

secy

= ::osy-—E
17

Now, giny = \{1-cos” y Where y & |:

CLASS24
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2
. 8
smy=_1-| —
’ (UJ

. 225
=siny=,  —
Y 289
=’siny—1—'
17
. ( _117} 15
=sin| se¢’ — |=—
S 17

1 E. Question

Evaluate each of the following

cosec| cos —
5

Answer

Let cos™ s

= cosecy =

1

( 13 } 5
= cosec| cos” — |=—
5) 4

1 F. Question

Evaluate each of the following



[ - 12} CLASS24
sec| sm —
Answer
.12 T

Let gin~!2= =y wh 0.Z

et i T ywertEye[ 2]

) 12

smy—E

_ . 12
= To find : sec| sin E =s5ecy

As sinZ0 + cos28 =1

2 cosy= \fl—sin2 y wher

= sec [sin'

1 G. Question

Evaluate each of the following

tan| cos” —
17

Answer
S T

Let cos~! 2 —v wherey =| 0.2
%=y wheey< 0]
S

= CosV=—

17
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To find: tan(cos'ziJ =tany
17

= As 1+tan?6 = sec?@

T
- _ [ h ki
tany =qfsec’y—1 W ereye[o-_,]

=ty = — | -1
cos~y

c:ot[cos‘1 -
5

Answer

:’cosy—3
5

i 13
To find: cot[cos lgjzcoty

= As 1+tan? = sec?@

= tany =fsec’y 1 Where y € [0-

Ll
coty cos’y

|

13| A

=
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el
coty 3

L _fis
coty_ 9
3
=coty =—
Y 4

[ _13} 3
= cot| cos = | ==
5) 4

1 I. Question

Evaluate each of the following

cos| tan - —
7

Answer

24
Let tan~! —— =
i

secy =
secy =
- secy = 625
49
25
= seCcy = —
= CoSYy =
secy
= ¢os .
T

( ) 24} 7
= cos| tan” — |=—
7



2 A. Question

Prove the following results:

[ a4 #12] 17
fan| cos —+tan — |=—
3 6

Answer

4 12
Let cos™ = =x and tan 1§=y
1 2
=c¢osx=—and tany ==
5 3

T
h -
where x_y E[O, "):I

-

Now, LHS is reduced o : ta

i
E
~

Il

= tanx =

= tan(x+y):%

= RHS
2 B. Question
Prove the following results:

3 43 6
cos| s —+cot — |=
5 2) 513

CLASS24
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.13 )
Let sin 1‘_-=x and cot l_.zy
5 2

. 3 3
= smx=E and coty =

T
h =
where x_y E{O. 7]

Now, LHS is reduced to : cos(x+y)

= cos(X +Y¥)=cosx.cosy —sinx.siny ..eq(i)

-
AS cosx =41 —sin-x Where

= COsSX =

NE

= cosecy =
¥ 2

= siny =
cosecy

. 2
= smy = —

V13
= cosy =fl-sin"y whereye [Q

ta] A
| I |

= cosy =

3
J13

Putting the values in eq(i),



= cos(x +y)=[%}

6

13

= cos(X+y)=

= RHS
2 C. Question

Prove the following results:

( 5 _13] 63
fan| s " —+¢os — |=—
5 16
Answer
L oo 5 .
et gin~™' = =x and ¢og
13

Similarly,
siny = Jl—cos2 y where X & [O.

2 siny=

lJ‘I_h

sinx sin
and tany = Y
COsX cosy

tanx =

5 4
=tanx =— and tany = —
12 3

Putting these values in eq(i)

CLASS24
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= tan(x +y)= 1"; 34
1273
63
= tan(x + =—
(x+¥)=1¢

= RHS
2 D. Question
Prove the following results:

. ( 43 4 SJ 63
S| COS —+sll — [=—
5 13

Answer

Let cos_j'%:x and gin~

3
= ¢cosx =— and
)

= s5inx =

Similarly,
- T
cosy =4/l—sin”y where x e [OE]
12
= cosy=—
L

Putting these values in eq(i)

e 412 35
sm(h+y)=g.1ﬁ+;.E
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. 63
= sin(x —r-y):5

= RHS

3. Question

Solve: cos(siu"l x) =

| -

Answer

A Letsinlx =y

Where YE {0,

] because "cos y" is +ve

12 A

=siny=x

W

where “x" is +veas y &

As sinfy+cos?y = 1

2N =—
36

Asx =0
35

=3X,___
6

4. Question
Solve: cos[Esm‘l(—x)]:O

Answer

.

A. Let gip~! (-Xx)=y where y [—

12| A
| I

ta| =



=siny=-X CI.A8824

According to question

=cos2v =0
»1-2sin"y =0

=1-2x" =0

Na

Exercise 4.9
1 A. Question

Evaluate:

{.4[ g
COs| s1n —_——_—
3

Answer

Let si_u'l

Tofind: cos |:sin_]

As sinx + cos?x =1

R <
T eosx=+1-sin"x XS

49
= ¢osx =, J1-——
625
576
200X =, [——
6253
24
= C0sX =—
25

[.4( 7)} 24
= COs| s1n - | =—
25 )1 25

1 B. Question



Evaluate:

(2]

Answer

Let cot™* [—EJ =X
12

T
where x {__‘;-1:]
ol

-

= ¢otX :—i
12

To find: sec I:cot -1 [—i
1')

2 2
AS ] +tan~x =sec” X

oo 4]

1 C. Question

Evaluate:

(4]

Answer

Let sec™ [_EJ =x wherex e (

13
S seCN=——
s

CLASS24
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3 -
AS |+ tan~x =sec” X

:
= tanx = —fsec x—1

Ztanx =— [—E] -1
5
12

= tanx =—?

5
= cotx=—F

-

(e

2 A. Question
Evaluate:

-1
TM){COS

Answer

Let COS—l

As]-tan’x =sec x

-
P tanx =—fsec x—1 35X <

1
= tanx =— ——1
cos™ X
25
2 tanx =—, | — | -1
7
24
=tanx =——
7



2 B. Question CLASS24

Evaluate:
cosec| cot —_—
3
Answer
-
Let Cot_l [_l_'J =x where x ¢ (EJ-;J
3 2

12
= cotx = Y

To find: cosec|:c:ot'1 {—?"

bl ]
As 1+cot”x =cosec X

~ cosecx =

= cosecx

Evaluate:
af 3
Cos| tan _——
4
Answer
1 3
Lettan~ | —= |=x where x | —— .0
4 o)
3
= fanxx =——
1

To find : cos[tau'l[—gn =C0s$X

hl bl
AsS1:tan-x =sec X

= 2 T 0
secx =vl+tan~x XS 7.
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secx =,/1+| —
4

5
@ seCcx=—
4

1
= COSX =——
secx

4
= COSX = —
5

el 2]

3. Question

Evaluate: sip [c.;)s'l [—

Answer

A. Let cos_l

= COSX
where x_y

To find: sin

= sin(X +y)=sinx.

oA 3
As ¢in“x+cos x =1

|

. E
Zsinx =41-cos”x

)

B
=

2 sinx = 1—[—

|

= sinx =

[V RN

al 3
Also, ] +cot”y = cosec™v

= cosecy = «Jl+ cot? y

= 5 -
cosecy =,(1+ T



13
= cosecy = =

=siny =
cosecy
. 12
=siny==—
Y 13

= cosy =coty.siny
12 5
FOSy=E——X—=——
12 13 13

Putting these values in eq(i)

=si(x+y)=

: -1
= sm {COS

Evaluate:
. -1

cot(sm

Answer

( .13 _

= cot| sin~ —+cos
4

X

N |
seC X =C0s T —

We know, sin~'x +cos ' x =2

is
o)

1 B. Question

Evaluate:

\ _ 11
sm(mn lx +tan I—] x<0
X

Answer

CLASS24
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sin(’tan'1 x+(cot™'x - 7))

=

tan™ 0 =cot™ % -7 forx < 0)

' (n J
sl ——1
2

_ _ T
“tan"' 8 + cot 16=:J

I T
wn
B
|
12| A
—

.T
—sin—=-1
-

-

1 C. Question

Evaluate:

Answer

sin(ta

-
e
o
=
—

o

I
[l
E

ta] Al

ctan @+ cot™tO=

e

1
1 D. Question

Evaluate:
cot(tan'l o +cot™! a)

Answer

5
cot| —
2

. _ Fis
( tan" 6+ cot™ @ =:]

=0

1 E. Question



Evaluate: CI-Ass24

cos(sec™ x +cosec'x) IxI=1

Answer
N T |
= ¢os| cos —+sin —
X X
_ 41 R 41
wsec lo=cos o and cosec lo=sint =
5] 3}
_ T
= COS—
.

-

. _ T
['.'sm 19+ cos™ =;]

-

=0

2. Question

21f cos™ x +ca

T

=sin!x +sin”ly -

3. Question

If sin~'x +sin”! v =E and cos ' x —cos‘ly =E. then find x and v.
3 6
Answer

. . T .
A. sin'x +sin 1y:§ ...eq(i)

1

- -1 T "
COS "X —CO0s y:E...eq(u)

Subtracting (ii) from (i)
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4

= (sinx—cosIx)+ (sinty +cosly) =

w|H
S A

6

_— - T T
= (sin 'x—cos lx)+ — ==
-

[ sin"@+cos'O= E]

v 1
Y
=’x=\'[§_1 andy:i
2 P2
4. Question

If c:c;t{cc)s_1 é + sin_I x} =(, then find the values of x.
5

Answer



a3 .
A cor(cos asinix =0

-

. T -1
= X =51 IlTC+: —Cos

. T -1 3 T, -1 3
= X=s11| NT+— [COS| €COS — |—COS| NT+— |SI| COs  —
2 3 2 5

{using sin(A-B) = sinAcosB -

] h
218" -9ma-27" =0
Using quadratic formulae

(—biM)

X =

]

CLASS24
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T
2X=—_——
' 6

R

3

6. Question
. .l ) )
sm| sin” —+cos X |[=1. Findx
5
Answer
ol _
A sm[sm 1§+c05 1:»:.J=l

]] - T
—+C05 "X=N7T+—
5 )

R -

= sin” :

-1 T .
=C¢0s X= llTI:+: —sl

-

T
= X=C0s8 I]'JT+;

7. Question
Salve: gin~!x = 2 = co

6
Answer

Al gin”

-
. oz
= 2sin"ix =22
3

-1 T
= sm X=-‘3-
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L. \3
X=—
2
8. Question

Solve: 45in~'x = —cos'x
Answer

A gsinT'x =t —cos'x

.- T .-
= 4sin 1x=7|:—[;—sm lx]

9. Question
Solve: tan
Answer

A tan~ls

> tan”'x +

[ tan @+ cot ™t B =

-1 T
2tan " X=—
3

= x=~3
10. Question

solve: stan~'x +3cot™ x =27

Answer

A Stan~'x =3cot™ x =232

_ s -
= Stan 1:nc+3{;—tan Ix)=2n

T
[ tan @+ cot ™t @ = :]
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= 2tan"'x =

A

- T
= tan 1x =Z

=2x=1
Exercise 4.11

1 A. Question

Prove the following results:

41 -1
fan 7 +tan

Answer
; . —1,1 —1
Given:- tan (_7) + tan™!(

Take
LHS

—tan—1rl

= [7)+ :
We know t
tantx +t

Thus,
=tan‘1( 2
13+7
=tan™! (a—%ér)
ol
= -1 E
tan ()

- ()

= RHS

Hence, Proved.
1 B. Question

Prove the following results:

.12 44 463
ST —+C08 —+tan — =T
13 5 16
Answer

Given:- sin—1(12 -1% -158% _
iven:- sin (1:3+|:os S Htan (1:) hi¢
Take
LHS



__112+ "'4+t _,,63
sin’ 13) cos™z +tan™ (e

We know that, Formula

sin"lx = tan“( X )
V1I—x2

1—x2

X

cosix = tan“‘(
Thus,

6

12 (2 3
=tan™} —u—,ﬁ + tan™H | === [+ @an7 ()

w

=tan! (1?2) + tan“(z) +tan1(2
We know that, Formula

tan~!x +tan"ly =+ ta

50,

in~t 12 +c s‘14+tan
sImT(gg) FeosTg
Hence, Proved.

1 C. Question

Prove the following results:

a1 42 .41

tan”' = +tan™' = =sinT —

4 9 5
Answer

. —1-1 1,2 - 1
Given:- tan™(3) + tan™!(3) = sin l(ﬁ)
Take
LHS

1 2
mn“(;) + tan"{a)

CLASS24



We know that, Formula CI-Ass24

X+
t::ul“:‘x-I-I‘.a.n“‘y:'1'r+lsan“11—y

Thus,

1

= tanfi_éj_j"l

1

Hence, Proved.

2. Question
Find the value of tan'{

Answer
Given:- tan-lc;-f) — tan (XX
Take

tan“(;-:) - mn“‘%)

We know that, Formula

x_
tan"!x —tan"!y = tan™? y
1+xy
Thus,
e

X 5V
1+;><(x+y
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yx+yles(s—y)

x4yt
— —1 b
=tan oyt

=tan'1

L]

5o,

3 A. Question

Solve the following equations for x:

tan ' 2x +tan”'3x =nw+

Answer

Given:-;an-1(2x) 8

tan~1x +

Thus,

= tan™t 1?;:::::: -
ot g
= 1—5;3 =tan(nm+ i—")
- l—s:xz =-1

=5x =-1+ 6x2
=26x2-5x-1=0
=26x2-6x+x-1=0
=26X(x-1)+1(x-1)=0
=(6x+ 1){x-1)=0
=26x+1=00rx-1=0
:>x=——-::orx=1

Since,
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6 V6' V6
S0,
= —% is the root of the given equation
Therefore,
1
6

3 B. Question

Solve the following equations for x:

e

tan~'(x =1)+ tan”' (x —1) = tan
Answer
Given:-tan™'(x + 1) + tar

Take
LHS

tan (x+1
We know

tan™lx +

= 62x =8-8x2+ 8
= 4x2 +62x-16=10
=6x2+31x-8=0
=4x(x+8)-1{x+8)=0
>4 -1){x+8=0
=26X+1=00rx-1=0
==:41:iurx=—8

Since,

x=7 € (V242



so, CLASS24

X =i is the root of the given equation

Therefore,
1
=3

3 C. Question

Solve the following equations for x:

tan~(x —1)+tan7 x + tan ! (x + 1) = tan ! 3x
Answer

Given:- tan™}(x — 1) + tan 2 (x) + te tan™! 3x)

Take
tan~(x— 1) + tan~}(x) +

We know that, Formula

We know that, Fo
tan™'x +tan~'y = tan™?!

Thus,

X
1 Toatx

= tan :;(’2_—,; =tan!3x

2-x2

zx4ox-x3
= tan™t S =tan! 3x

2-%2

43-x2
2-3x2

=tan!

=tan~!3x

=’4mﬂﬂ
2-3x2

=3x

= 4x - x3 = 6x - 9x3
29x3-x3+4x-6x=0
-»8x3-2x =0

= 2x(4x2 - 1) =0



=’x=00rx=1 DI'X=—£

2 2
All satisfies x value
So,
x=0orx =§ orx= — i is the root of the given equation
Therefore,

1

x=0,%x

‘T2
3 D. Question
Solve the following equations for x:

qf1-x 1 _
tan 1(—}——&11} 'x=0.
l1+x 2

Answer
iven:- tan~1 (=) — 2
Given:-tan (1+ 21:

Take

3 E. Question

Solve the following equations for x:

_ _ T
cotlx —cot I(X +2)=1__), where x > 0

Answer
Given:- cot™*(x) — cot™x+ 2) = i

Take

cot™}(x) — cot™}(x+ 2) = ;[—2

We know that, Formula

CLASS24
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1
cot™ix = tan~1-
X

Thus,

-1 -1 1 ™
= -— e
tan X tan x+2 12

We know that, Formula

x—

tan!x —tan~!y = tan™? y
1+xy

Thus,

1 1
“1f xx+z | _ T
= tan (“_Ix_z) T2
X X+
— X X4z
1%

2 3-1

T ) (1nyar

= (x+1)2 = (1+V3)?
= xX+1 = £(1+v3)
>X+1=1+v3orx+1=-1-
sx=v3orx=-2-Vy3
asgiven, x > 0

Therefore

X =v3

3 F. Question

Solve the following equations for x:
- - 1l 8
tan~'(x+2)+tan”'(x —2)=tan 1[7—9).x>0

Answer



Given:- tan*(x + 2) + tan~}(x— 2) = tan"*(;})

Take

-1 —1fe _ 9y _ —1i
tan'(x+ 2) +tan '(x— 2) = tan 79

We know that, Formula

X+
tan™'x + tan~'y = tan™? Y
1—xy
Thus,
N -1 (x+2)+(x=2) — -1 i
1-(x+2)x(x-2) 79
-1 2x _ -1 1
= tan 1-(x2-4) tan 79
-1 _ -18
SN e nT tan 79
2x
= — = —
5-x* 74

= 40 - 8x% = 158>

1
2 X=-0rXx
4

Since,
x>0

So,

X =i is the root of the give

Therefore,
1
=2

3 G. Question

Solve the following equations for x:

Answer

I

Given:- tan‘l(’—z‘) + tan“(g)

Take

CLASS24
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tan~t () + tan ) = ©
2 P73

We know that, Formula

X+
tan Ix+tan 'y = t::u'rl—y
1T-xy
X X
—1 _2-'_3 _ &
= tan (1-"») T a
2 &
—1 (3x+2x) ™
= tan s—xz) T4

— 5x T
~tan ()= §

6-x>
6—x° 4
3Ix
= — = 1
6—x=

=5x=6-x°

>x2 +5x-6=0
>x2 +6x-%x-6
= X(x+6) -
=X = -6,

as given

Answer
e pam—1pX"2 —1%+2
Given:-tan™* (=) + tan ™' ()
Take
-2 +2
mn“é_ 4j| + ran“(x

We know that, Formula

X+
tan!x+tan ly= tant 1Y
1-xy

X—2 X42

1] 3=a'm+a ™

R =
-3 X+

L

(X—2)(X+aM+(X+2)(X—4)

-1 (X—3)iX+4) =

= tan (ix-ai(iﬂth»:iixi»zi) =
[EEET
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—1 f(x—2)(x+4)+(x+2)(x—4) _ =
= tan ((x—é)(x+4}—(x—2)(x+2) T oa

x% 425 84x°2x8 ™
—1 = —
= tan ( (x*-16)—(x*—4) 4

—1 zr"—m) b
= i —_— ] -
-12 4

-6 4

3 L. Question

Solve the following equati

where x <
Answer
Given:- t3
Take
tan~1(2 +
We know that

tan~ix +tan"'y =

Thus,
—1 (24x)4(2=x)
= tan 1-(2+4x)x(2-x) =tan
-1 4 _ —12
= tan 1-(a-x3) tan 3
= tan™! —— — tan~12
1-44x% 3
4 2
= = -
1-4+x 3

22x2-8+2=12

=2x2 =18
=2x=213
Since,

X <-v3orx>v3

So,



x= +3, -3 is the root of the given equation ctAss24

Therefore,
x=+3, -3
3 ). Question

Solve the following equations for x:

Answer
Given:- tan“‘(x )+tan“‘(z

Take

X e
tan ) +tan 2 1)

We know that, Formula

tanix +tan"ly =

=+

4. Question

Sum the following series:

»)ﬂ—l

Al g2

4 -1
tan + tan +tan 3—+...+ tan

1 + -,Zn—l
Answer

Given:- tan~1(= )+tan‘1( )+tan‘1(m)+ +tan‘1( e )

1427201



Take
2:1—1
tan“1 (W) = Tn (Let)

1 pl_pn-1
Th= (1+z“zﬂ-L)

We know that, Formula

-y
l+xy

tan!'x —tan~!y = tan™?

=T, =tan™* 2" —tan~12°7%
So,
Ty =tan~'2' —tan~?2°

T, =tan"'4 —tan™'2

Evaluate : cos

Answer
Given:- cos (Si]l_lg +sin™

Take

3 5
-12 -1
CDS(SII] 3 + sin 13)

We know that, Formula

sin"!x+sin~'y = sin™? [xJ 1-y2+yy/1 —xz]

12
cos(sin“ [3 x 2+ 2 x2 ]}
3 13 13 £l

cos (sin'1 [2 ])

We know that, Formula

R Gl O REVROY)
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sin~’x = cos™*1 —x2 c'-Assz4

Therefore,

2
= -1 ’ _ E) )
cos(cos 1 o5
= ( -1 ’33)
=cos| cos™ " [—

65

=33
65
So,
(--1.3_,} __15)_33
cos|sin 5 sin 13 _65

2 A. Question

Prove the following result

Answer
Given:-sin™

Take
RHS

5
sin~!—
13

We know t

cos~ix = sin”

Thus,

=qin=12 4 oin-1 [1 _ 2
sin 13+sm E

- | 5 - 4
=SI — S5 "=
n 13 + 5

By pathagorous theorem

= _l.i _12
tan 12+tan 3

We know that, Formula

X+y
1-xy

tan~'x +tan"'y = tan™*

Thus,
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Now,
LHS
=sin—1 %3
65
63
—tan~?! 65
2542
1-(1g9)
—— )
(32)
So,
LHS = RHS
sin™1 63 = sin™?! > + cos™
65 13

2 B. Question

Prove the followin

Answer
Given:- si

Take
LHS

We know that, Form
cos lx = sin"'y/1 —x2

Thus,

—eim—1 2 cio-14
sin 13']'511'] 3

By pathagorous theorem

5 4

tan-l e . mn-l _E_
25 16

1 1—=

1692 25

=tan? 2 4+ tan 12
12 3

We know that, Formula

X+y
1-xy

tan"'x +tan"ly = tan™?!



Thus, CLASS24

We know that, Formula

T
sin"!x +cos~ly = 3
Thus,

9 1
= —(cos“—)
4 3

Now,

Assume that

-1

cos ' - =X
3

Then,



- cosx = CLASS24

And sinx — |1 -
- Sinx =22
3
Therefore,
22
= -1____
X =sin 3
= LHS =RHS
o Ogin11 = Zgin1 2
= s 4 3o Sm

Hence Proved

3 A. Question

Prove the following resul
sin"xsin12x= n/3
Answer
Given:-sin™}

Take

sin~ix +s

We know that, Fc
sin"!x —sin~'y = sin
Thus,

= sin™12x = sin~?! [?

= sin~12x = sin™? [?W—g]
sy = [Byi—xz_%

zx_[z 1-x2 z]

-2 B

= 25x%2 = 3(1-x3?)

=3x2= —_

28
1 (3
”=izf;

3 B. Question



Prove the following results: Solve the following: ctAss24

cos Ix+sinlx/1-n/6=0
Answer
Given:- cos1x +sin‘1§ —-==0

Take

cosTix+sini-—— =0

oA

X
2

- — m
=cos'x+sin7! ] ==

X
2
We know that, Formula
cosix =sin7!y/1 —x?

Thus,

=cos ix+ sin‘li,.If = sin~
We know that, Formu

sin~*x +sin~ty

Exercise 4.13
1. Question

If cos® x/2 + cos 1y/3 = a, then prove that 9x2-12xy cos a + 4y? = 36 sin? a.

Answer
. —-1X —_
Giveni-cos X4 cos™¥=2a
2 3

Take

X ¥

-1 -1

cos'=+cos"iZ=a

2 3

We know that, Formula



cos'x +cos™ly = cos™? [\(y - ﬁ\/l——yl] CLASS24
cos it 1= () f1- @] -

| vd—x= X \9-y=
6 2 3

] =cosa

=xy—V4—x% X /9 —yZ=6cosa
=xy—6cosa=vV4—x%/9—y?

Now lets take square of both side, we get

= (xy— 6cosa)? = (4—x3)(9—y?)

= x%y? + 36cos?a— 12xycosa = 36 — 9x* — 4y? + x%y?
= 9x? + 4y? — 36 + 36cos%a— 12xycosa =0

=9x2 + 4y? — 12xycosa — 36(1 — cos®a) = 0

= 9x? + 4y? — 12xycosa — 36sin°a = 0

=9x2 + 4y? — 12xycosa = 36sin’a

Hence Proved

2. Question

Solve the equation: cos™! a/x-cos™® b/x =cos™® 1/b - cos! 1/a
Answer

Giver:- cos =~ cos™* 2 =cos™t %— G0 L i

Take

a b 1 1
cos '——cosTi—=cost——cos ' —
X X b a

1 1

—13 11 —d -1 b
=cos i >+cos™t - =cos™* =+ cos™* -
X a b X

We know that, Formula

cos™ix +cosly= cos7?! [xy— ﬂ\/l—_y?]

Thus,

seos [t f1- @ 1= Q)] - cos - - 1= ()
@O - - - -

- -0 -6

Squaring both side or removing square root, we get




(=)0~ (-~ 0) CLASS24
(- - - -
-0 - -

= (b? - a2)a2b? = x2(b2 - a2)
=2 = a2p?
=x=ab

3. Question

Solve: cos™! v3x+cos Ix= 1/2

Answer
Given:- cos~*v3x + cos!x

Take

cos~13x + cos1x

Squaring both sides, we

23x%=1-x2 - 3x2 + 3%

4. Question

Prove that: cos ! 4/5+cos ™! 12/3=cos ! 33/65
Answer

—1 33

. .4 _q12
Given:- cos - + cos 1= = cos
5 3 65

Take
LHS
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4 os1 12
—+C0§ ~——
5 3

cos™?!

We know that, Formula

cos 'x+cosly= cos?! [xy— J1i—x2/1— yz]

Thus,

o[- - (-]

B - 48 1 16 1 144
R 1T 25 169
5

—_1[+= 3

=cos ' |[Z—-Ix=
65 5 13
48 15

= cos™! ___s]
65 6

—rqe—1 33

cos™ —

= RHS

0l
tan{.‘!tan 1.

Answer
Given:- tan {z u.m—l(i) 2
5/ Y]

Now, as we know

2x
). iflxl <1

2tan~(x) = tan~( T

and E can be written as tan™*(1)

1
= tan {tan“(:fxi) —tan™t 1}
-]
= —175y _ —1
tan{tan (12) tan 1}
We know that,
-y

tan'x —tan" 'y = tan™!
y 1+ xy



= tan {tan“(;?;;)}
= tan {ran* (1))}

1 B. Question

Evaluate the following:

(1 ) _13]
fan| —sm —
2 4

Answer

Given:- tan{i sln“g}
z 4
1. 43
Let S sin 1; = t(say)
Therefore,
in13=
=sin™ 0= 2t
=sin2t = 2
4

Now, by P

=sin2t =
potenuse
Bas
=cos2t=
hypote
=cos2t= —

4

As given, and p

wnfznt )
= tan(t)

We know that: Formula

tan(x) = 1 —cos2x
= 1+ cos2x

= [B=TE~T) . by rationalisation
e M

CLASS24
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Hence

m{; ) _13}_4—\/7
sin 2 = 3

1 C. Question

Evaluate the following:

. (1 _14J
sin| —cos™ —
2 5

Answer

Given:- sin (ims'lf)

2 5
We know that: Formula
cos 1x = 2sin™t

Thus, given

=sin (sin‘1 (i
As we know

sin(sin~'x) =

Hence,

2 1
sm(—cos —)=i—

2 5) T 10
1 D. Question

Evaluate the following:

. 42 1
sin| 2 tan 3 +cos(tan -J§]
Answer

Given:- sin (2 tan"‘(g)) + cos(tan™* y/3)

We know that :- Formula (- obtain by Pythagoras theorem)
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sin—i( 2x ) = 2tan~!(x); Formula of tan in terms of sine, so that it make simplification easi

+x2

And

cos-l( ‘_11 _') = tan~(x); Formula of tan in terms of cos, so that it make simplification easier
v 14x®

Now given function becomes,

2xE
=sin (sin‘1 (—i)) + cos (cos‘1 (,L_))
1+; v1+3
=sin (5111‘1 (E)) + cos (cos‘1 (3))
13 2

_12 1

13 2
=%
26
Hence,
sin (Ztan‘1 - )-!—cos(tan‘ 5) = 27
(3) T 26
2 A. Question
Prove the following results:

-

S

{

2sin~t

h )

Answer
, . Lo a8
Given:-2sin~*- = tan l(?"')

Take
LHS

. 13
=2sin12
5

We know that, Formula

X
=1 -1
sin~!(x) = tan"{(—
(\r—1 = xz)

Thus,

3

=2 xtan™? (_\1;'_7)
Vo zs

3
=2 x tan~}(%)
5

=2x tan“(z)

Again we know that, Formula

2x

2tan~(x) = tan?!
(x) (1w

). iflx| <1

Thus,
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a
=tan(;7$)

= tan"}(3)

16

= _1.2_.
tan (7

= RHS
So,

262 = i)
5 7

Hence Proved

2 B. Question

Prove the following results:

al 12
tan~ = + tan™' = = = cos
4 9 =

Answer
Given:- tan~?

Take
LHS

= il },
tan (4

()
Multiplying and dividing by 2
= e ()}

We know that, Formula

2
2tan tx = cos? 1-x
1+x2
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So,

tan‘i(l) +tan~! (E) = Zeost (E)
4 9 2 5

Now,

1 (3
==-cos 1(—)
2 5

We know that, Formula

=cos™'x = sin*V1—x2

Thus,

a2
fan " —=-—
3
Answer

Given:- m—1(3) = lmn—i(I—z)
3’ 2 5

Take

LHS

=tan-1(2
tan~ (%)
Multiplying and dividing by 2

- ()

We know that, Formula

2tanix = tan“( 2x )
1-x2



. (z,z) CLASS24

So,

. "12~1t _1(12)
an (3)—2an g

Hence Proved

2 D. Question

Prove the following results:

'(an'][lJ+2tan_1 (l
7

Answer
Given:-tan™t

Take
LHS

= taﬂ—l(
We know
2tan lx =
Thus,

=tan’(;) + tan“(%)
=tan'(3)+ ()

= tan™(=) + tan"2(3)
7 4
We know that, Formula

X+y

tan*x +tan" 'y = tan—?
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S0,

1 1 h
tan~(=) + 2tan™}(2) = —
&) @-3
Hence Proved
2 E. Question

Prove the following results:

. 14 1 =
sin?' =+ 2tan o=

5 3 2
Answer

Given:- Sin“(%) + 2tan~?(

Take
LHS

=sin"1(3) + 2
We know t
sin~1(x)
And,
2tan™ix =

Thus,

=mr%~%9+;
J:

-3-1

_ tan () + tan™' (@)

= tan™ () + tan' )

We know that, Formula

X+y

tan'x+tan !y = tan™!

22
=tan~? -2 s,
1 ax

)

= tan()

1-xy

hid
2
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So,

4 1
Sin_l(g) + Ztan“(g) =

I

Hence Proved
2 F. Question

Prove the following results:

2sint S _an 12 T
5 31 4

Answer

Given:- 2sin‘1(z) —tan—? (ﬁ) —

Take
LHS

= 2sin'1(§)— tan (52

We know that, F

We know that, Formula

2tan lx = tan‘l( e )
1—x2
Thus,
=tan™? —12*3 117
= (1_9) —tan™'(3])
1e
a

= tan™}(3) — tan™}(3)

1l
= tan~1(2H — tan—1LZ
tan"}(%) — tan~}(3)
We know that, Formula

X~y

tan'x —tan~'y = tan™?
Y T+xy

T 3L

24 17
= tan™ (1+zi li)
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So,

3 17 T
2sin”!(z) —tan () = 7

Hence Proved
2 G. Question

Prove the following results
a1
2tan 1(7

Answer
Given:- 2ta

Take
LHS

=2tan™?
We know t
2tan™'x = tan
Thus,

1
2% 1,1
=tan~}( )+ tan"'(3)
25

— tan (&) + tan ' ()

= tan‘1(1—52) + tan“(i)

We know that, Formula

X+y

tan~'x+tan~'y = tan™!

— tan—l. :: ;
B 1—x=
127.

1043
o ()

86

1-xy

13 96
=tan™* (— X =
24 91



)
= RHS
So,

1 1 4

—1¢ 172y _ —17°

2tan (5)+tan () = tan (7)
Hence Proved

2 H. Question

Prove the following results:

rtant o tant 2T
3 31 4

Answer

Given:- 2tan_1(§) —tan~!(

We know that, Formula

tan~'x —tan"'y = tan™*

24 17
— -1
= tan —7—3‘%24 T
LT aryy

Taa—119
=tan?! (T{%)

217

= tan“l 6_25)
625

=tan"1(1)

b2 g
4

= RHS

So,

CLASS24
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4 31 4

Hence Proved

2 1. Question

Prove the following results:

2tan™ %+ tan‘lé =tan~ %

Answer
iven:- -1,1 “1ely o130t
Given:- 2tan™(;) + tan™"(;) = tan {1;')

Take

LHS
=2tan™}(}) + tan(3)

We know that, Formula

50,

1 1 31

17 “1ry _ -1

2tan (2) + tan (7) tan (17
Hence Proved

2 ). Question

Prove the following results:



4m“4[lj—mu4[—l—]=f
5 239/ 4

Answer

Given:- 4tan~(2) — tan~}(—) = =
e stan() - tan~ () = §
Take

LHS

= 4tan”'()) — tan " (5

We know that, Formula

atan-lx = gt (XA
N 1 —6x2+x4

Thus,

Hence Proved

3. Question

5
IF gin™ =" _cos = tan

a-b

Then prove that y = .
1+ab

Answer

CLASS24
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z=
Given:- gj —cos™ 12— pan?
sm 2 cos 1+b2 (1 x=)
Take
: —11-b tan~!

~sin e = AT
We know that, Formula
2tan x = sin™?t ( )

1+x2

1—x?
2tan 'x = cos 7 ——

1+x2

And

Ztan~tx = tan“( e )
1—x2

Thus,
=2tan~*(a) — 2tan~!(b)

=2(tan"'(a) —tan~?*

On compari

a-b
1+ab

=X =

Hence Proved
4 A. Question

Prove that:

Sf1-xt) f1-x7
tan cot
2x 2x

Answer

12|

11x=

I=|

Given:- tan~11 "z-}-c t—

Take
LHS

_11)(2

= tan ] =

2x

We know that, Formula

1
cot™ix = tan™? (})



o (1) ()

1-x*

We know that, Formula

tan'x +tan"'y = tan™!

xR X
o (L)

—xZ.

14xt-2xax®
| LT
tan (21(1—:2)—2::(1-!.'-’))

2x(1-%X2)

Answer

Given:- sin (tan‘llz;:a+
Take
LHS

. _y41-x7
=sin (tan 1=+ cos
2x

We know that, Formula

x+y
1-xy

-1 1-x?

1+xz)

. L f1-x?
2tan” "X = cos
1+x2
Thus,
= gi _11___,‘2 -1
sin (tan P~ +2tan x}
Again,

2tan"'x = tan? (
X 1-—x2

)

CLASS24
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= sin (tan" 1;—:: + tan™! (12:2))

We know that, Formula

1 X
1—xy

1, (22
= g} am—1 X —x2
sin| tan 1 *“zx(i)
2x T hp-x3
=sin (tan‘ (_—'
143 —2x+ax®
= gin (tan* (——“:‘" ))

= sin(tan"(c0))

-sn()

tanx +tan"'y = tan™

=1
= RHS
So,
o 1-x?

in—1 -1 -1

sin™' | tan + cos =1
( 2x 1 +x2)
Hence Proved
5. Question
9 al
If sin~! —° ——sin~'——— =tan ' x , Prove that x = ab
l+a- 1+b- 1-ab

Answer
Given:- sin-17-22 a1 2B =4

Iven:- sin (1+='-‘)+ sin™ —5 = 2tan (x)
Take

a 2b
sin_l(l - El2) +sin~! 1507 = 2tan~1(x)

We know that, Formula

2x
2tan~'x = sin™* (1 " xz)
Thus,
=2tan"*(a) + 2tan *(b) = 2tan"!(x)
=2(tan"1(a) + tan (b)) = 2tan(x)
=tan"2(a) + tan"(b) = tan~1(x)

We know that, Formula
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tan'x +tan"'y = tan™*
1—xy

Thus,

—q,a+h -
=tan 1(5 = tan™1(x)

On comparing we get,

_ =a+hb

1-ab

Hence Proved

6. Question

L

! is constant for x =1, find the constant.

Show that 2tan ' x + sin~

3

1+x-

Answer

Given:- 2tan™(x) + sin™?

=4tan~1(x)

Now as given,

For, x =1

= 4tan~*(1)

=4xZ

=n

= Constant

So,

2tan~*(x) + sin~(: ad Y=T7
14+x2/ "

7 A. Question

Find the values of each of the following:

tan']{ﬁcos[.?sin‘l %)}

Answer
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Given:- tan™! (Zcos (2 sin“(%)))
Take
1
tan™( 2cos (2 sln“(ij)
We know that, Formula

sini () =

oA

Therefore,

. 1
cos(2 x E) =3

Thus,

=tan™! (Zcos (2 X %))
=tan™! (2(:03 (E))

()

=tan~!(1)

Find the values
cos(sec‘lx —cosec

Answer
Given:- cos(sec™x — cose
Take

cos(sec™'x — cosec™1x)

We know that, Formula

-1 -1 n
sec "X+ cosec "xX= E

Therefore,
T,

—cos(;)

=0

So,

=cos(sec™x — cosecix) =0
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Solve the following equations for x:

1 a1 1 41 @
I 2tan 2 +man = +tan~t ===
5 6 x 4

tan”

Answer

Given:- tan~! i +2 tan‘1§ + tan“% +tan~?

E R

k1s
T

Take

stan~12 +2 tan‘lé + tan‘li + mn‘ii =

™
4 4

We know that, Formula

2x
2tan~'x = tan™? ( )
1—x2

Thus,
1 2% 1 1
—11 —1p2% -1l i
=tan™" - +tan (1 js) +tan™-+tan o=
stan™3 +tani(F) + tan o+ tan 1o = =
4 = (5] X £

ﬂtan‘lz + tan‘l(%) + tan‘li +tan il =

=

e

We know that, Formula

X
tan~'x + tan~'y = tan! e

1 5
=
=tan~? (f_lfi +tan™? i - tan‘l‘—t =

s 1%

| A

2
=tan~? (&;) + tan“i G tan“i ==

= 4+
as

— 32 11 —11 G g
=tan 1(E)—I-tan 1E+tan 1;= 3

We know that, Formula

X+
tan~'x+tan"'y = tan™! =
1—xy
Andtan™1="2
Thus,
22 1
af == 41 1
=tan (;i%;j) +tan = tan™ 1
a3’ & h

23s
=tan"! (i?i) + tan’li = tan11

58

— 2335 11 —
=tan—? z—ﬂ;)+tan 1;= tan 11

We know that, Formula



Xty CLASS24

tan'x +tan"'y = tan™*
1—xy

Thus,
235

2as 1
1| =2z x| — —1 . h £29
=tan (1ﬂx5) tan™" 1, here P26 <1

228 X

On comparing we get,

235x+226
=— =
226x-235

=235x+226 = 226x-235

=235x - 226X = 226 + 235

8 B. Question

Solve the following e

Answer
Given:-3

Take

2tantx = cos ! ——
n-"x cos (1+x2

And

2x
stantx = tan? ()
nx 1%z

Thus,

=3(2tan"(x)) — 4(2tan'(x)) + 2(2tan~*(x)) =

~6tan~*(x) — Btan~*(x) + 4tan~I(x) = ;

=2tan}(x) =7

stan(x) = '—:

=X =tan=
6
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=2 =—=

V3
8 C. Question

Solve the following equations for x:

af X 1 1-x° 2a
tan = |+cot =—.x>0
l-x- 2x 3

Answer
Given:- tan~1 2% -11-x® _ 2w
tan™ — +cot™ - 5 x>0
Take
1 2x _11-¥ _ 2m
1_x2+cot 2x 3

We know that, Formula

1
cotix= tan™! (;)

Thus,

8 D. Question

Solve the following equations for x:

2ta11‘1(sinx) =tan~* (.’-’secx).x;tg

Answer

Given:- 2tan~(sinx) = tan™ (2 secx),x + E
Take

2tan™1(sinx) = tan™*(2 sec x)

We know that, Formula
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2tan *x = tan™? (
1—x2
Thus, here x = sinx

=tan! (zx;’n?x) = tan (2 secx)

1—

We know that, Formula
cosx = 1 —sin?x

2sinx
=>——=25eCXx
COS~X

sinx
=20
cosx

=tanx =1

T
=Y = —
4

[

Thus the solution isx

8 E. Question

Solve the followin

Answer

Given:-

We know that, Formula

cos }(—x) = m—cos'x
2tan'x = cos™? (—

And,

2x
2tan~!'x = ta —1( )
X n 1—xz
Thus,
=1 — 2tan~*(x) + X 2tan "~ (x) = >

~m—tant(x) =

=tan(x) =T — ?

kg
=»x=tan;



~x=\3 CLASS24

8 F. Question

Solve the following equations for x:

4(x—2) 4[x+2] T
tan +tan =
X -1 x+1 4

Answer
. _y{x-2 _yx+2
Given:-tan 1 ¥ 2 ytan 1 ¥4 T
—1 x+1 4
Take
1 Xx-2 1 X+2 m
stan™' — +tan ' — = —
x-1 x+1 4

On comparing we get,

X—2 -1
y —

x-1  2x+3

(2x+3)(x=2) =-1
-1)

=2(2x+3)(x-2)= -(x-1)
S2%2 - Ax +3x-6=-x+1
22x2 - x-6=-x+1

=22x2=7

wenf
2

9. Question
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o ja- 0 _[ acosB+D
Prove that 2 tan ™" tan— |=cos™ —— " —
a+b 2 a+bcos6
Answer
owen2tar [ tn(2)) - conm (5522)
Take
LHS

- 2tan ( [ (e))

We know that, Formula

2tan'x = cos™?! 1%
s 1+x2

Thus,

( { Ew)

2 (a+bv{=~h)xtm=(?])
= cos :

T R T
a+b+{a—b)xtan? (E,]

. (1—tar1 (e))-Fh(l-l-tan:@))
(1+tan— (9))+h(1—l‘a.u"'(§))

=C0s

Dividing numerator and denominator by (1 4 tan? (g)) we get

(L-mnzfg]-)
a =3 +b
-1 .J.'HRB-R J
_ranz(®
+b(l tan [E})
We know that, Formula

1+tan( }
1—tan? G)

=cos

M

COSX = — v
1+ tan? ('2")
Thus,
= cos-? (acosﬂﬂ:)
a+bcost

= RHS
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2 tan-1 a—bt (8) _ _l(ac059+b)
n at+b ) |79 3 bcose

Hence Proved

10. Question

prove that:
-1 23 -1 ZX}' -1 :ﬂﬁ
tan o — -+ tan - —=tan ———. where a= ax - by and B=ay+bx.
a--b- X" -y~ a-->b-
Answer
Given:-tan~* =%} tan* =Y. = tan* 28
a?-b? x2—y3 az—p=
Take
LHS
= tan‘l,zibgr tan~! -2
a?-h? 2_y2
We know that, Formula
X+y
tan *x+tan 'y = tan?!
1-—xy

Thus,

zabxZ-zaby +Ixnvai-axyb?
{aZ—b2)(x3-¥2)
a“x7+b -y —2abxy—a-yi-bix"—2abxy
(a%-b%)(x3-y%)

=tan~!

1 2(abx®—aby “+xya”—xyb”)

=tan
tan a®x2+b%y?—2abxy-a’y®-b*x*—2abxy

Formula used:- a2 + b2 + 2ab = (a+b)?

= tan—* 2{(bx+ay)(ax—by)}
i (ax—by)*—(a®y*+b?x*+2abxy)
—tan—! 2{ax(bx+ay)+by(ay+bx)}

(ax—by)%—(bx+ay)?
As given
a= ax-by and B= ay+bx
Thus,

1 20

tan™ —— e

= RHS
So,




Hence Proved
11. Question
For any a,b,x,y>0, prove that:

3

] } ! h
2 gl 3ab--a’ |2 3xy —-x7 o 2ap
—tan | —— |-t | =¥——— [=tan  ———. where a=-ax by, B = bx + ay.
R b —3ab)3 vy —3X"y a--b"
Answer
. 2 _q 3ab?-a?® 2 _q 3xy?=x? 1 2

Given:-Ztan 1 32 =2 4 Zpgn1 30— _ o1 298

3 b¥-3a%b 3 yE=3x"y a*—f*
Take
LHS
_2 = 3ab®-a? 2 1 3xy®-x3
- 3t:-m b"—.‘:‘azi:l+ 3tan y2—3x%y

Dividing numerator and denaminator of 15t term and 2"9 term by b3 and y3 respectively.

3abZ—a3 axy*—x?
2. 1 3 2 —1__ ¥
= Etan T T ;tan sy
B3 v3

356

2 = 3
=Ztan L BL 4 Ztan?
3 3

-56)

We know that, Formula

3x — x&
3tan ’x= tan [ ———
(1 = 3x2)

s3-6)
=)

Thus,
= ;[3 tan™! (%)}—l— g {3tan™? G)}
=2tan~! (S] +2tan? (;—‘r}

=2 (tan‘1 (g) + tan! (;—‘))

We know that, Formula

X1y
tan!x +tan~'y = tan? 3 -

>,

Thus,

=2tan! (%):Gg)
()3
(ay+bx)

=2tan! == ’Pf“]

by

=2 tan~! 2
y—ax

As given,

ay + bx =B, -ax + by = «a
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=2tan~£
a

We know that, Formula

2x
2tan"'x = tan? ( )
1—x2

Thus,

=tan™! (%3 X D:;:)

-1 2aﬁ
=tan s
= RHS

So,

2 3ab%—a® 2 3:v;y2 B
_ -1_ - il -1_"Y -
Stal‘.l bF = 332b+ 3tan 72— -y

Hence Proved
MCQ
1. Question

Choose the correct answer

L‘\/l-f-xz-\ffl—}lzj

A. sin 2a

If tan

B. sina

C. cos 2a

D. cosa

Answer

We are given that,

tan‘i{\il +x2 —\/1—x2}= p
V1 +x2++1—x2

We need to find the value of x2.

Take,
tanﬁl{diffii——Jiffii}__
V1 +x2+41—x2

Multiply on both sides by tangent.

tal[tn‘{ LHxf -Vl xE” tana
= | e =
VI+xZ+41—x2

Since, we know that tan{tan™ x) = x.

= o, thenx® =

CLASS24
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v‘1+\c2—\,’ _Ez—t:ma
T Viow
or
tana:m_m
VI+xZ+41-x2

Now, we need to simplify it in order to find %2, So, rationalize the denominator by multiplying and dividing by

VIR —VI—x%

\/1+:-:2—v’l—:(2) (\Kl-!-xz—\fl—xz)
X
Vi+xZ+41-x2 V1+xZ—y1-x2

=:rt'ﬂl)(‘t=(

B (VI —vI—x2)°
(VI 2+ VI— ) (VI +x2—V1—x2)

Note the denominator is in the form: (x + y)(x - y), where

(x + y)x-y)=x2-y?

So,
(\,'f1+xz—~ 1—x=)= .
S tana=——z———— (i)
(,‘ 14x2 ) —(Vi—x7)~
Numerator:

Applying the algebraic identity in the numerator, (x - y)? = x* + y° - 2xy.

We can write as,

(Virxe-yi=m) - (Ji+=) + (VT=e) —2/1+x3/T-x2

> (VIFe —VI=w) = @433 + (1—x%) —2/(T+ ¥ (1 —)

Again using the identity, (x + y)(x - y) = x% - y2,

2
=:~(Jl+x2—\fl—xz) =1+x*+1-x%2-21—(x2)2
> (VITx VI —x2) =2 2/T—x* -..{il

Denominator:

Solving the denominator, we get

(\/1+x2)2—(\/1—x2)2:(1+x2)—(1—x2)
( 1+x2) (\/——xﬂ) =1+4+x*—1+x2

= (V1 +x2)2 -(V1 —xz)z = 2x2 -..{iii)

Substituting values of Numerator and Denominator from (ii) and (iii) in equation (i},

2—2y1—x+

= tana =
2x2
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2x2

1—+1—x*

x2

=S tana =

= tana =

By cross-multiplication,

sx2tana=1-v(1-x%

sv(il-xh=1-xtana

Squaring on both sides,

= [V(1-xM)? =[1-»tan a)?

21-x"= (12 + (x?tan a)? - 2x2 tan a [, (x - y)? = %2 + y2 - 2xy]
21-x"=1+x*tan? a-2x2tana
s>xttanfa-2x2tana+x*+1-1=0

s>xltanfa-2x2tana+x} =0

Rearranging,

>x? +x*tanfa-2x2tana =0

>x1(1+tanfa) -2x2tana =0

s>xY(sec?a)-2x?tana =0[" sec2 x-tan?x = 1= 1 + tan? x = sec? x]
Taking x2 common from both terms,

= x? (xzsec2a~2tanoc)=0

>x2=0or(x*secla-2tana) =0

But x? # 0 as according to the question, we need to find some value of X2,
s>x2secla-Ztana=0

2 2

=2 x“seca=2tana

In order to find the value of x2, shift sec? a to Right Hand Side (RHS).

- 2tana

= NT=—
secZa

sina

]

- 1
Putting sec?q¢ = —— andtana =
cos~Qa

ﬂna)
2 _ 2 (cos o
1
cosZq

cosa

2 sina )
DX =2X——X (05
cos
=x?=2sinacosa
Using the trigonometric identity, 2 sin X cos x = sin 2x.
= x? = sin 2a
2. Question

Choose the correct answer
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0 :
(18] 12
\o|<u?| w |3 w|

3
29

Answer

We need to find the value
[ -1 1 so—1
tanjcos™ —=—sin

5v2

Let,

= C0Sa =

Let us fin
For sin a,

We know th ,sinfa+cosca=1

| W

=sin“a=1-¢

=sina = V(1 - cos

Substituting the value o

2

1
s -5

= 5lna Sﬁ

N 50

_[50-1

~J 5o

9

.50

7

52

7 1
We have sina =i andcosa =3



So, we can find tan a.

. _sina
- " cosa
7
_5v2
1
5\2
7
=—=x5y2
5V2 V2

=>tana=7..(i)
For cos b,

We know the trigonometric identi
sinb+cos’ b=1
»cos’b=1-sin’b
= cos b =v(1-sin? b)

Substituting the va

4
We havesinb =5 and

S0, we can find tan b.

sinb
v, tanb = ——
cosb
=
_ 17
1
Vi7
4
=—X17
17 vi7

=tan b =4 ..(ii)

We can write as,

a2l ) e
tan{cos 5z sin 1!ﬁ}—t:m[a b}

Now, we need to solve Right Hand Side (RHS).

We know the trigonometric identity,
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tana —tanb

t b=
an(a—b) 1+ tanatanb

Substituting the values of tan a and tan b from (i) and (ii),

7—4

1+ (D@

3

T 1+28

3

29

So,

¢ [ a1 - 4] 3

all4C0S — =51 T —t{=——
5v2 V17 29

3. Question

Choose the correct answer
2tan”" | cosec(tan ! x) = tan(cot ' x) | is equal to

A. cot1x
1l
B. COT 1_
X
C. tan"1x
D. none of these

Answer

We need to find the value of 2 tam! |cosec(tan! x) - tan(cot™ x)|.

So, take
2 tan'! |cosec(tan x) - tan(cot® x)|

Using property of inverse trigonometry,
1

cot™x=tan™1—
X

= 2tan|cosec (tan~1x) — tan(cot 2 x)|

1
= 2tan"!|cosec (tan"'x) — tan (tan‘1 ;)|

1

1
= 2tan~?|cosec (tan™1x) — ;|

Now, lety = tan'l x
So,tany =x

Substituting the value of tan'l x and x in the equation,

1
= 2tan"!|cosec (tan~1x) — tan{cot™ x)| = 2 tan~?! [cosec y—ﬁy
Put,

1 sin
cosecy =—— andtany = Y
siny cosy
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1 1
_1 —1 — —1 = =
= 2tan™"|cosec (tan™" x) — tan(cot™" x)| = 2 tan siny sy
cosy
1 cos
=2tan~? .——"-—y
siny siny
1—cos
=2tan~?! -8
siny

Since, we know the trigonometric identity,
1-cos2y=2sinly

= 1—cosy= Zsinz%

Also, sin 2y = 2 siny cosy

= siny =2 sin% cos%

We get,

= 2 tan'! |cosec{tan x) - t
Puty = tan! x as let above.
= 2 tan'! |cosec(tan x) - tan(cot ! x)| = tan'! x
4. Question

Choose the correct answer

-
-

2

h

4 X _ X° 2x

If cos™! X+ cos! = ¢, then —,——Yt:oscHY
a b a- ab

A.sin a

B. cos?

a
C.tan? «

D. cot? «
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Answer
We are given that,

—1Y _

b 14

_1X
cos 5+ cos

We need to find the value of
%2 2
— — o -Cosa+
az ab b2

By property of inverse trigonometry,

cosla+ coslb=cosl{ab-v(l-a2v(l-b2)

So,

X
cos -+ r:os‘1X =«
a b

2

. X\ 2
-t OO~ - 1-0)
Simplifying further,

- 7 y2
=>cos i =—— |1— 1-—=|=«a

ab az b2

Taking cosine on both sides,

=

2 2
= cos|cos™! - 1¥x— 1—1- = cosK
ab az b2

Using the property of inverse trigonometric function,

cos(cos! x) = x

To simplify it further, take square on both sides.

Xy 2 x2 yz
=>[ab—cosa] =[ 1—; l—b—2

Using algebraic identity,

(x-y)@2 =x2+y? - 2xy

xyy2 2 x?
= (:y—b) -I-COSZR—%COSR: (1_3_3)(1 -=

Simplifying it further,
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2,2 2 2 24,2
Xy > 2%y Xy Xy
= —=—+cos*a——cosa=1—-——S+——
azh? ab az b?  a?b2
Shifting all terms at one side,
2052 o252 2 2
X X X 2x
Xy Y XY Y sa=1-cos?a

a?b? a?b?  az b2 ab
Using trigonometric identity,

sinfx+costx=1

ssin?x=1-cos? x

We get,

.2 2

X°  2xy y
———cosa+—=-sin’a
az ab b2

5. Question

Choaose the correct answer

. ’ , . |
The positive integral solution of the equation tall ~X +CO0s

Ax=1y=2
B.x=2,y=1
C.x=3y=2

D.x=-2,y=-1

Answer

We need to find the positive integral solution of the equation:

_ Y ., 3
tan 'x + cosT ! —— =sin ! —

JI+y2 V10

Using property of inverse trigonometry,

-1 ¥ ox?
cos™ "X =tan
Also,
b'd
sin!x =tan ! ——
V1 —x2
Taking,

tan"!x + cos™!

= tan"!x +tan™?!

1+vy

=sin"~

3

V1o

is
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y? 3
l —
1+y? -
= tan"'x +tan™? ¥ = tan? 109
1+ yz 1-— ﬁ
1+y2—y? 3
1+y2 -—
—
= tan 'x +tan? v = tan~t V10
P 10—9
J1+y? 10
1 3
1+y2
= tan"lx +tan™?! v Y" _ tan? glo
f]_ + yZ ﬁ
1 1+y2 3
= tan~!'x + tan™?! X LA P tan~! ( % v‘lO)
1+y? y Y
1
=tan !x+tan'-=tan*3

Using the property of inverse trigonometry,

A+B)

tan*A+tan !B = tan~* (
1—AB

Similarly,

= tan|tan™? < || = tan[tan™* 3]

Using property of inverse trigonometry,
tan(tant A) = A
Applying this property on both sides of the equation,

1
+_
3
1__
y

= =3

Simplifying the equation,

xy+1
y
+1
Xy y =3
y y—x
xv+1
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Cross-multiplying in the equation,
=xy+1=3y-x)
=xy+1=3y-3x
=>xy+3x=3y-1
=>x(y+3)=3y-1

_3y-—-1

x_
R

We need to find positive integral solutions using the above result.

CLASS24

That is, we need to find solution which is positive as well as in integer form. A positive integer are all natural

numbers.

Thatis, x, y > 0.

S0, keepthevaluesof y =1, 2, 3, 4, ... and find x.

x [3(1)—1
1+3

3(2)S
2+3

P
7

3oy

SELET

—
~

Note that, only at y = 2, value is X is positive integer.

Thus, the positive integral solution of the given equationisx =1, y = 2.

6. Question

Choaose the correct answer

- e 7T
If sin~'x —cos 1.\;:'g.thenx=

w
.¢\| 12 ] —
Tas

12

0
\
12| +—

D. none of these
Answer
We are given that,

1

o — —_ m N
sin"!x — cos x=—..()

We need to find the value of x.

By using the property of inverse trigonometry,
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sin!x +cos™!x =-2TE

We can find the value of sin'! x in the terms of cos! x.
= sin~ix= g— cos™ix

Substituting the value of sin'! x in equation (i),

s
' —— “1g) 1 —
2 cos X) cos "X 6

Simplifying it further,

e T
-1 -1
2 6

bl -1
=2 =2c0s7ix =

ad oA

Therefore,

RE
¥=3
7. Question

Choose the correct answer

sin[cot‘1 {tau (c:os‘1 x)}:l is equal to



D. none of these CLASSZ4

Answer
We need to find the value of
sin [cot™! {tan (cost x)}] ...(0)

We can solve such equation by letting the inner most trigonometric function (here, cos’! x) as some variable,
and solve systematically following BODMAS rule and other trigonometric identities.

Let cos!

X=y
We can re-write the equation (i),
sin [cot! {tan (cos! x)}] = sin [cot! {tan y}]

Using trigonometric identity,
T
tany = cot (— - y)
2
[, cot(g--y) lies in 15 Quadrant and sine, cosine, tangent and cot are positive in 15 Quadrant]

T
: -1 -1 — o -1 -
= sin[cot™{tan(cos™* x)}] = sin [cot [cot(z '\)}]
Using property of inverse trigonometry,

cotl{cot x) = x
i
= sin[cot!{tan(cos™* x)}] = sin [5 . y]
Using trigonometric identity,
£
cosy = sin (5 = y)
i i i = w
Substituting this value of sin (E — y),

= sin[cot™}{tan(cos™* x)}] = cosy

1

We had let above that cos =~ x = y.

If,

cos!

x=y
=X = C0S Y

Therefore,
sin[cot™*{tan(cos™*x)}] = x
8. Question

Choose the correct answer

The number of solutions of the equation tan ! 2x ~ tan ' 3x = is
4

A2
B. 3
C.1

D. none of these



Answer

We need to find the number of solutions of the equation,
i
tan™?2x +tan~13x = Y

We shall apply the property of inverse trigonometry, thatis,

tan*A+tan !B = tan™?! (ﬂ)
i o 1—AB
So,
¢ _1( 2x +3x ) T
an N\ ———=) ==
1-(2x)(3x)/ 4
= tan~! ( - ) _I
1—-6x2/ 4

Taking tangent on both sides of the equation,

5x ™
—1 A -
= tan [tan (1 - 6x3)] = tan4

Using property of inverse trigonometry,

tan(tan'l A) = A

Also,
L = 1
an-— =

4
We get,

5x -

= ————— 3

1—6x2
Simplifying it,
=5x=1-6x?

=26x2+5x-1=0

Since, this is a quadratic equation, it is clear that it will have 2 solutions.

Let us check:

We have,

6x2 +5x-1=0
=26x2+6x-x-1=0
=26x(x+1)-(x+1)=0
=>(bBx-1)x+1)=0
=2(Bx-1)=00r(x+1)=0

=2bx=1lorx=-1
! 1

=S X=—-0rx=—
6

Hence, there are 2 solutions of the given equation.
9. Question

Choose the correct answer
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- Sn - 2w
If ¢ =tan 1{tanT}J and f = tan I(—tan?

A.da=3p

B. 3a = 4B
T
C.g—-p=_°2
=P 12

D. none of these
Answer

We are given that,

a = tan tan4 and = tan

Take,

a=tan™! (tanS—Tj
4

a 5
We can write :“ as

Also, by t

ta:r:l('ft+E

4

' h1d

[ tan(n -.I-;)

m

_ tan-1 i

= ot =tan (tan4)

Using the property of inve
=20 T
T4

Now, take

B=tan™* (—tanzs—")

We can write 23—“ as,

Then,

p =t (~ten(7—3))

By trigonometric identity,



=—tan—-
3

T Tf CLASS24
tan (Tr 3)

[, tan (]T _3) lies in Il Quadrant and tangent is negative in |l Quadrant]
3

= f =tan™* (— (— tan g))

= B =tan™?! (tang)

Using the property of inverse trigonometry, that is, tan'l(tan A) = A,

118

= = —

B 3
We have,

i 4 b1
a—4an B—S

=24da=mnand 3B =mn

Since, the values of 4a and 3B are same, that is,

da=3B=mn
Therefore,
da = 3B

10. Question

Choose the correct answer

The number of real solutions of the equation /] ~ cos2x = /2 sin '(sinx).—z<x <7 i
A0

B.1

C.2

D. infinite

Answer

We are given with equation:

V(1 + cos 2x) = v2 siml(sin x) ...(i)

Where m=x=n

We need to find the number of real solutions of the given equation.

Using trigonometric identity,

2 2

€0S 2X = C0S“ X - sin“ X
=>¢c0s2x =cosZ x - {1-cosZx) [, sin?x +cos?x=1=sin?x =1 - cos? x]
= €0s 2x = €05’ X - 1 + cos’ X

»cos2x=2cosix-1

=1+ cos 2x =2 cos? x

Substituting the value of (1 + cos 2x) in equation (i),

V(2 cos? x) = v2 sin'l{(sin x)



= V2 |cos x| = v2 sinl{sin x) CLA5524

V2 will get cancelled from each sides,

= |cos x| = sinl(sin x)

Take interval x (—E_E):

22

|cos x| is positive in interval (~12’-325 , hence |cos x| = cos x.

And, sin x is alsa positive in interval (—E,E), hence sin"l(sin x) = x.
2°2

S0, |cos x| = siml{sin x)
> C0S X = X

If we draw vy = cos X and ¥ = X on the same graph, we will notice that they intersect at one point, thus giving
us 1 solution.

=, There is 1 solution of the given equation in interval (—E,E).
2'2
Take interval x [—ﬁ.—E):
2
|cos x| is negative in interval [—n,_f), hence |cos x| = -cos X.
2

And, sin x is also negative in interval [—n_ —g) hence sin"l{sin (m + x)) = + x.

S0, |cos x| = sini(sin x)
- -COSX =T+ X
= COSX =-M-X

If we draw y = cos x and y = -m - X on the same graph, we will notice that they intersect at one point, thus
giving us 1 solution.

~, There is 1 solution of the given equation in interval [—n. —2)

Take interval x € G“]

|cos x| is negative in interval (g r[]. hence |cos x| = -cos x.

And, sin x is positive in interval (5,1-[], hence sin’l(sin (-m-x))=-nm-x
2

50, |cos x| = sinl{sin x)

= COSX=-T-X

= -C0S X = -(T + X)

SCOSX =T+ X

If we draw y = cos x and y = 11 + x on the same graph, we will notice that they doesn’t intersect at any point,
thus giving us no solution.

~, There is 0 solution of the given equation in interval (gn]
Hence, we get 2 solutions of the given equation in interval [-m, r].

11. Question

Choose the correct answer



If x < 0,y < 0 such that xy = 1, then tarlx + tarmly equals

A,

12 A

1] A

C. -m

D. none of these

Answer

We are given that,

xy=1x<0andy <0

We need to find the value of tan'! x + tan’! y.

Using the property of inverse trigonometry,

X+
tan'x+tan !y =tan?! ( _ )
1—xy

We already know the value of xy, thatis, xy = 1.
Also, we know that x, y < 0.

Substituting xy = 1 in denominator,

X+
tan™'x + tan~'y = tan™? (—y)

1-1
X+y
-~ (55
an 0
And since (X + y) = negative value = integer = -a (say).

=tan~? (—%)

stanl x + tanl y = tan? -o ...(i)
Using value of inverse trigonometry,

™
tan™t —oo = ——
2

Substituting the value of tan! -« in the equation (i), we get

bis
tan'x+tan"ly = -3

12. Question

Choose the correct answer

T ul
If u=cot™ { rmle}—tan'1 {\/rzule} then, mu[ I«-:J =

A Jtan ©
B. Jeoto
C.tan®

D.cotB

CLASS24
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We are given with

u = cot}{ytan 8} - tan' {vtan 8}

We need to find the value of tan (E - ‘_‘).
3 2

Let vtan B = x
Then, u = cot'}{vtan 8} - tan"l{vtan 8} can be written as
u=cotlx-tanlx..(i)

We know by the property of inverse trigonometry,
cot1x+tanlx = QTE

Or,

cot™lx= g —tan~lx

Substituting the value of cot! x in equation (i), we get

u= (cot! x)-tanlx
T
Su= ﬁﬁtan“‘x) —tan 1x
G

—tan !x—tan'x

Rearranging the equation,
s
= u+2tan‘1x=i
bl
=22tan lx=—-—n
2
Now, divide by 2 on both sides of the equation.

-1 ]T
2tan™"x 3~ U
-

2 2
7 u
= tan 1x=%—§
m 1 u
=2%373
m u
T4 2

Taking tangent on both sides, we get

m u
1) — R
= tan(tan X) tan ( 2)

Using property of inverse trigonometry,

tan(tan'l x) = x



=X=tﬂll(g*g)

Recall the value of x. That is, x = vVtan ©
T u
= tan (Z_E) = ytan b

13. Question

Choose the correct answer

X -
If cos [;—‘cos !

A. 36
B.36-36cosb
C.18-18cos 6
D. 18 + 18 cos O
Answer

We are given with,

—-1X —
cos 12+ cos 1=
3 2

()

N@

We need to find the value of
2 e 2
4x*—12 xycosi + 9y

Take Left Hand Side (LHS) of equation (i),

Using the property of inverse trigonometry,
cos A+ cos B = cos? (AB —f1 — A% = Bz)

Putting A = E and B =

L]

]

X y
LHS = cos™' + cos 1%
cOos 3 cos 2

- - () 1= B (16
4
= LHS = cos ! . 1—-— [1-=

X
= LHS =cos™ | ——

Equate LHS to RHS.

cos [ 2 — okl il B
6 9 4 2

Taking cosine on both sides,

y © ) 0 .
—=—,then 4x- —12xycos—+9y-=
2 2 ’ T
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Using property of inverse trigonometry,

cos{cos 1 A) = A

Simplifying the equation,

Xy V9-—-x%/4-—-y? 0

R 2 %
Xy vVv9-—x2/4-y? 6
ra A = cos

£}

= xy— 9 —x%/4—y2 = 61:035
e

= Xy — 6cos§:,i9 —x2.fa—y2

Squaring on both sides,

o1° 2
= [xy— 6 cosi] 3 [\J‘J = ‘/4—y3]
Using algebraic identity,

{A-B)2 =A%+ B2-2AB

= (xy)* + (6 cosg)z —2(xy) (6 cosg) =(9-x2)(4—-y?>)

2,2 2B 0 2 2 =, 2
= X"y~ + 36 cos E—leycosE=36—9y‘—4x +xX°y“

(¢ L8
= x%y? —x%y? +4x% +9y% — 12xycos3 = 36 — 36 cos*5

2_ E 2 NS 29
= 4x 12:\yc032+9y =36 —36cos >

Using trigonometric identity,

cos 268 = cos? 8 - sin? 8 ...(ii)

sin2B8+cos?28=1=sin20 =1 - cos? B ...(iii)

Putting value of sin 6 from equation (iii) in equation (ii), we get
cos 26 = cos? B - (1 - cos® )

Or, cos 20 =cos? 9 -1 + cos? @

Or, cos20=2cos’ -1

Or,2cos? 8 =cos26 + 1

Replace 8 by 6/2.

,0 2x9
2cos §=cos

+1



CLASS24

2]

= ZCOSZE =cosB+1
Substituting the value of 2 r:oszg in

¢] 2]
4x%— 12xy cos; + 9y? =36—36 coszi

0 8
= 4x% — 12xycos§ +9y?=36-18 (2 coszi)
2 6 2

= 4x° — 12xycos§ +9y* =36 —18(cosf +1)

0
= 4x%— 12xyf:as§+9y2 =36—18cosP— 18

0
= 4x%— 12xycosz + 9y? = 18

14. Question

Choose the correct answe

If o =tan"

>
A

w
| H

Answer

We are given with,

wfgx)

2y — X

oo )

We need to find the value of a - B.

a=tan“(

So,

o V3x f{2x -y
g (2 - ()

Using the property of inverse trigonometry,

A—B)

tan?A—tan"!B =tan"‘(
an 1+AB

So,



V3x | [2x-y
s

2y —xJ\ V3y

V3x X 3y — (2x—y) (2y —x)
1 V3y(2y—x)
V3y(2y — x) +3x(2x—y)
V3y(2y—x)

=>a—p=tan"

V3x X V3y — (2x— ) (2y —x)
V3y(2y —x)
V3y(2y —x) )
V3y(2y — x) + V3x(2x—y)

=>ttf[3=tan”1(

3xy — 4xy + 2x% + 2y° —
=>n:—B=tan‘1( XY T NI Y xy)

2y/3y2 — \/3xy + 2y/3x2 — /3xy

2x?% + 2y% — 2xy )
2\/3x2 4 24/3y2 — 2\/3xy

:btc—B—tan“(

Simplifying it further,

f 2x*+2y*-2xy
=a—f=tan =
V3(2x2 + 252 — 2xy)
The term (2x% + 2y2 - 2xy) gets cancelled from numerator and denominator.
a—p tan“( ! )
=a0—B= -
K]

Using the value of inverse trigonometry,

tan~? (i) B,

V3/ 6
Bl

oy a— B = g

15. Question

Choose the correct answer
Let f(x) = ™ (39057 31, Then f(8 W/9) =
A. o518
B. o157 18
C. o218

D. none of these
Answer

We are given with,
f(.‘() - ecos"*[sin(}:ﬁ%n

We need to find f(%")
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We just need to find putx = %E in f(x). ctAss24
50,
f(B—") ecos{sin( 53}
9
Simplify the equation,

f( ?n) c”,l{ “ u(nruau)}
- f(%“) = ecos {557}

Using trigonometric identity,

cos(g - B) =s5inB

F(2) = oo e

cosl{cos 6)

(5)
= _—) =
9

16. Question

Choose the correct answe

tan_1~1— ~tan™! 3 is equal
11 11

A0

w
12 ] —

c. -1

D. none of these

Answer

We need to find the value of

tan‘1—1~+ tan™*— 2
11 11

Using property of inverse trigonometry,
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tan*A+tan !B = tan™?! (
1—AB

Replacing the values of A by i and B by i

1 2 11
tan! —+tan' —=tan7'| — oo
an 11 an 11 an 1_(i) 1)
11/\11
Solving it further,
1+2
11
2
=11

3
—an-1[ 11
=tan (121—2

121

=tan~?

3
—tam=1] 11
=tan (119

121

Thus, none of this match the result.
17. Question

Choose the correct answer

1

|

If cos™! X Lcos~1 2 — g, then 9x2 - 12xy cos 6 + 4y2 is equal to

1]
tos

A. 36

B. -36 sin’ 8

C. 36 sin’ 8

D. 36 cos? @
Answer

We are given with,

Y _

3 0

_1x
cos E + cos

We need to find the value of 9x? - 12xy cos B + 4y°.

Using property of inverse trigonometry,

cos tA+cos !B=cos? (AB —J1—A%J1-— BZ)

Take Left Hand Side {LHS) of:



_1x -
cos™ =+ cos 0

2

WY _ CLASS24
3

Replace A by E and B by §

a1 X 1Y
LHS =cos 3 + cos 3

S 10 e

—cos 1—E 1—ﬁ

XY 4—x2 |9-—y2
6 4 9

=cos”~

Further solving,

=C051(_\'y V4 —x? g_y2)

6 2 3

We shall equate LHS to RHS,

Taking cosine on both sides,

Vi—x2 /9 —y2
cos [cos‘1 (%— g\ﬂg—)l = cos@

2 3

Using property of inverse trigonometry,

cos(cos1 A) = A

So,
Vi—xz2 o—y?
@%—T‘:Ty:cose
xy VE—xZ,/9-y2
- = cos6
6 6
W VAT
= cos

By cross-multiplying,

=xy-v(4-xH) V(9 -yd)=6cos O
Rearranging it,

= xy -6cos8 =v(4-x2) V(9 -y?)
Squaring on both sides,

= [xy - 6 cos 87 = [V(4 - x?) V(9 - y2)]?

Using algebraic identity,



(a-bP =a’+b-2ab

= (xy)? + (6 cos 8)? - 2(xy)(6 cos B) = (4 - X2)3 - y?)

= x2y2 + 36 cos? B - 12xy cos B = 36 - 9x? - 4y? + x2y?
= x?y? - x2y? + 9x% - 12xy cos B + 4y? = 36 - 36 cos? B
= 9x2 - 12xy cos 6 + 4y? = 36 (1 - cos? )

Using trigonometric identity,

sin? @ + cos? B =1

=sin28=1-cos?8

Substituting the value of {1 - cos? 8), we get

=9x2 - 12xy cos 6 + 4y? = 36 sin? B

18. Question

Choose the correct answer

Iftanl 3 + tan1x = tan® 8, then x =

A5

"h | —

'Jll: :iu.

Answer

We are given with,

tan'! 3 + tan! x = tam! 8

We need to find the value of x.

Using property of inverse trigonometry,

A-!-B)

tan!A+tan™!B = tan™! (
1—-AB

Let us replace A by 3 and B by x.

3+x )

tan '3 +tan"'x = tan? (—
1-(3)x)

=tan‘1( 3+x)
1—-3x

Since, according to the question
tan'! 3 + tanl x = tan'l 8

So,

3+x
= tan~? (m) =tan™'8

Taking tangent on both sides,
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3+x
= tan [tan‘1 (m)] = tan[tan~* 8]

Using property of inverse trigonometry,
tan{tanl A) = A

3+x
= =
1—3x

Now, in order to find x, we need to solve the linear equation.
By cross-multiplying,

=3+ x=8(1-3x)

=23+ x=8-24x

=224x +x=8-3

-25x =5
5

=2 X=—
=35
1
=X==
=5

19. Question

Choose the correct answer

. 337
The value of sin ; cos

\ -

is

A 37
5

~1
-

|

Answer

We need to find the value of sin~! (ms%‘),

33w 3
sin™! (cos —) =sin™?! (cos (Gn + —))
5 5
[5:cos " = cosom+ )
%, €05 —— = cos (6T + —

Using the trigonometric identity,
cos(6n+ 8) = cos@

As the function lies in | Quadrant and so it will be positive.

. _1( 33Tr) ) _1( 3]‘[)
= — = —_
sin™" | cos 5 sin™ | cos 3



Using the trigonometric identity,

cos® = sin (g - B)

- ( 33]'[) 1 ( . (T[ 3]‘[))
= — ] = _—
sin CcoSs 5 s sin 2 5

Using property of inverse trigonometry,
sinl(sin A) = A

m 3T

2 5
_Srt—srr
T 10

T

T 10

20. Question
Choose the correct answer

{
-

) Sn S | P
The value of ¢cos Lcos— +s11° | sin WIS
3

=
s DN

A,

12 A

h
A

c. 108

3
D.0
Answer

We need to find the value of:

s ) s on )
cos cos 3 s s 3

Let us simplify the trigonometric function.

We can write as:

5n b8
cos? = COoS (Zn - 5)
Similarly,

5w 1§
sm? =sin (2rr - 5)

() n)

= COSs CO0S— sin sin——
3 3

=cos™? (cos (Zn - g)) + sin™? (sin (er - g))

Since, cos(Zn —g) lies on IV Quadrant and cosine is positive in IV Quadrant.
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2T ——) = cos—
CDS( T 3 COS3

And since, sin (Zn—g) lies on IV Quadrant and sine is negative in IV Quadrant.

=, 8in (21’[ - ;—T) = —sing

318 5 T b
-1 fal in=1 [ gin—— | = -1 = in=1{ _ cin—
= C0S (cos 3 )+ sin (sm 3 ) = CO0S (coss) + sin ( 51113)

=cos™?! (cnsg) —sin™? (sing)

Using property of inverse trigonometry,

sin"(sin A) = A and cos(cos A) = A

= cos™! (coss—n) +sin™? (sin S—H) LR
3 3 S

=0

21. Question

Choose the correct answer

sin [2 cos™! L_—'P is equal to
' 5

1212 ]
'Jc‘-L- "JIIO\

| 4

Answer

We need to find the value of:

nfecos ()
sinj2 cos c
Let cos™? (—E) =x

Take cosine on both sides, we get

3
cos [cos‘1 (_E)] = COSX

Using property of inverse trigonometry,
cos{cos 1 A) = A

3
= —— =CO0SX
5

We have the value of cos x, let us find the value of sin x.



By trigonometric identity, CI-Ass24

2

sin?x+costx=1

ss5in?x=1-cos? X
= sinx = /1 —cos?x

Putting cosx = —E,

S0

Now,

sin {2 cos

Using the

sin2x =2
= sin{z cos™?

Putting the value of si

—2X4X 3
T f757 5
_ 24
T 25

22. Question

Choose the correct answer

Ifg= sil]_l{sill(—600°)}, then one of the possible values of 6 is

A
3
B. T
2
)
c. =T
3
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Answer

We are given that,

8 = sin! {sin (-600°)}

We know that,

sin(2n-68) =sin(4n-8)=sin(6bn-8) =sin(8n-8)=... =-sin B

As, sin (2n - 8), sin (4 - B), sin (bt - 8), ... all lie in IV Quadrant where sine function is negative.

So,

If we replace 8 by 600°, then we can write as

sin (4n - 600°) = -sin 600°

or,

sin (4n - 600°) = sin (-600°)

Or,

sin (720° - 600°) = sin (-600°) ...{i)

[, 4n =4 x 180° = 720° < 600°]

Thus, we have

8 = sin’! {sin (-600°)}

=8 =sin't {sin (720° - 600°)} [from equatian (i)]

=8 = sin'! {sin 120°} ...(ii)

We know that,

sin (m-08)=sin (3m-6) =sin (5n-6)=...=sinB

As, sin (n - 8), sin (3n - 8), sin (5 - 8), ... all lie in || Quadrant where sine function is positive.

So,

If we replace 8 by 120°, then we can write as

sin (M - 120°) = sin 120°

Or,

sin (180° - 120°) = sin 120° ...(iii)

[, m=180° < 120°]

Thus, from equation {ii),

8 =sin! {sin 120°}

=8 =sin'! {sin (180° - 120°)} [from equation (iii)]

=8 =sin! {sin 60°}

Using property of inverse trigonometry,

sin'l (sin A) = A

=8 =60°
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23. Question

Choose the correct answer

. 2x S 1-x° 4 2x T _
If 3sin L[ . ]—-4(:09 ! - |+ 2tan ! _ ]=—,thenx is equal to
\1+x° 1+x~ 1-x- 3
A L
N

Answer

We are given that,

2x 1—x? 2% n
3sin™? ( )— 4cos™t + 2tan™?* (—) =
1+x2 1+x2 1—x2 3

We need to find the value of x.

We know that by trigpnometric identity, we can represent sin 8, cos 8 and tan 6 in terms of tan 6.

Note,

i 29_( 2tanB )

Site¥=\1+anze
. 1—tan®0

0S8 =\T+tan20

tan 20 ( 2tanB )

MY =\1"tanz0

So, in the equation given in the guestion, let x = tan 0.

Re-writing the equation,

2x 1-x? 2x b
s —1 _ -1 -1 =
3sin (1+x2) 4cos (1+x2)+2tan (1—x2) 3

2tan® ) _,f1—tan’® Lot _1(
1+ tan?@ © 1+ tan?8 an 1—tanZ0

= 3sin™? (
Substituting the values of trigonometric identities,

= 3sin™(sin20) — 4 cos1(cos20) + 2 tan~(tan 20) =

w]| A

Using the property of inverse trigonometry, we have

sin'! (sin A) = A, cos'! (cos A) = A and tan'! (tan A) = A

m
=3x29—4x28+2x29=§
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T
=63—89+4B=-§

20="_
==
m 1
O==-x2
2¥=3%3
B—TE
Y%

Now, in order to find the value of x, recall
X =tan®©

Substitute the value of 6 derived above,

tann
= = —
x 6
1
=2 X=—
V3

24. Question

Choose the corre

Answer

We are given that,

ly=n..l

4 cos! x + sim
We need to find the value of x.

Using the property of inverse trigonometry,

™
sin™10 +cos7 !0 = >

T
=sin™20 =—-—cos™18
2
Replacing & by x, we get
T

=sin"ix= 3~ cos ix

Substituting the value of sin'l x in (i),

dcoslx+sinlx=mn



-1 E -1
= 4cos x+(5—cos x)=rr

—1 n -1
= 4cosT'x+o—cosTIx =T

= 3c05 "X=T—=
2
-1 Tr
=3c0s'X=—
2
. nxl
=05 ' X=—X=
2 3
_1 ]T
= (0S8 TX=-—
6

Taking cosines on both sides,

T
= cos[cos™1x] = cosg

T
= X=C05—
6
V3
> X=—
2

25. Question

Choose the correct answer

If Iﬂll_l x+l -+ tan_i x1 = (an_l(—.-), then the value of x is

x-1 X
A0
B. -2
C.1
D. 2
Answer

We are given that,

tan~ (22) + tan~? (22) = tan3(=7) .-.(0)

X
We need to find the value of x.

Using the property of inverse trigonometry,

tan!A+tan B =tan! ( AtD )
1—AB

Replace A by ¥ and B by ¥2,
X

x—1

x+1 x—1
i i) + tan~? (\; 1) =tan~! 1(:—%(21—)(2)

x—1 X

Putting this value in equation (i),

X+1 x—1
tan—? (;) +tan™! (T) =tan"1(-7)
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G20+ (5
-2 %)
Taking tangent on both sides,
20+ (5
1- (29 G5

Using the property of inverse trigonometry,

= tan™! = tan"1(-7)

= tan [tan~! = tan[tan™*(-7)]

tan(tant A) = A
g
1-GED %)
Cross-multiplying, we get
x+1 1{ - 1 x+1 Bl
- =)+ () -6

Simplifying the equation in order to find the value of x,

=-7

x(x+ l)+{x—1)(x—1)7 x(x—1)—-(x+1)(x-1)
x(x—1) _"7[ x(x—1)

Let us cancel the denominator from both sides of the equation.

S x(x + 1)+ (x-1)x - 1) = -7lx(x - 1) - (x + 1)(x - 1)]

X Fx+ (x-1F =-7[x2 - x - (x + 1)(x - 1)]

Using the algebraic identity,

(a-b)=a’+b°-2ab

And, (a + b){a~-b) =& - b?

S Fx+ X +1-2x=-Tx -x-(x2-1)]

=22x2-x+1=-7[x2-x-x + 1]

=22x2-x+1=-7[1-x]

22%2 - x+1=-7 + 7x

=22x2-x-Tx+1+7=0

=>2x2-8x+8=0

=22(x2-4x+4)=0

S>x2-4Ax+4=0

We need to solve the quadratic equation to find the value of x.
-2Xx-2x+4=0

=X(x-2)-2{(x-2)=

= (x-2)(x-2)=0

s>xXx=20rx=2

Hence, x = 2.
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26. Question

Choose the correct answer
If cos™'x > sin~' x- then

A.—1—<_\:£1

VA

D.x>0

Answer

We are given that,

coslx >sinlx

We need to find the range of x.

Using the property of inverse trigonometry,

™
sin"'x +cos™ix = A

Or,

b
=sinix= T cos x

So, re-writing the inequality,
cos! x > sinl x

i

= cos x>ifcos X

Adding cos! x on both sides of the inequality,

1 1

118
=cos ix+cosix> >8 cos'x+cosix

Bl
= 2(05'1x>5

Dividing both sides of the inequality by 2,

2cos1x

- =
2

N =

T
>5X
:>n:(:’sf1x>E

4

Taking cosine on both sides of the inequality,

T
= cos[cos™x] > cos

=2X>

V2

V2

1 is the minimum value of X, while the maximum value of cosine function is 1.

CLASS24
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27. Question

Choose the correct answer

In a AABC, If Cis a right angle, then tau'l 4

)
b+c)

>
A

A

A
“

Answer

We are given that,

AABC is a right-angled triangle at C.
Let the sides of the AABC be
AC=b

BC=a

AB =c

By Pythagoras thearem, where C is the right angle,
{AC)? + (BC)? = (AB)®

= b’ +a?=c?

Or,

al+pt=c2..)

Using the property of inverse trigonometry,

A+B
tantA+tan 1B =tan?! ( )
1—AB

Replacing A by (ﬁ) and B by (i \
a ), (b
= tan~! (%) +tan~1 (%) — tan~?! (b + Czl + (C +ba)
‘ o 1- 53+ (5)

a(c+a) +b(b+c)
(b+c)(c+a)

(b+c)(c+a)—ab
(b+c)(c+a)

T ac+a%+b?+bc (b+c)(c+a)
=tn (b+c)(c+a) x bc+ab+c2+ac—ab

=tan~ !




@ (b ,fa% +b%+ac+bc
= tan (—) +tan”|{—)=tan}|{————
b+c c+a cz+ac+bc

Substituting the value of a2 + b? from equation (i),

c2+ac+be
=tan~ | ——7—
c2+ac+bc

=tan’l
a b T
=tan"}({——) +tan™?! (—) =—
(b + c) c+a 4
28. Question

Choose the correct answer

1 'EE.] is
8

The value of _c,-in[ —sin
4

T R

242
1

D, . =i

33

Answer

We need to find the value of

(1, V63
S 45111 8

. _31v63
LEt51n 1T:x

Now, take sine on both sides,

. [ __,ve3]
Sin | sin ‘?‘ = SInx

Using the property of inverse trigonometry,
sin(sinl A) = A

: V63
= SIDXZT

Let us find the value of cos x.
We know by trigonometric identity, that
sinfx+cosfx=1

scosZx=1-sin?x
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T

= €0SX =+/1 —sinZx

Put the value of sin x,

Cos 2X =
= C0S 2X

= C0S 2X =

=2cos2x=1-
Or,

2sinfx=1-cos 2x

1—cos2x

=sin® x=—+——
2

i 1—cos2x
= sinx = 2

Replacing x by x/4,

_ X
N sin% _ 1 c052(2 X 4)

Substituting the value ofsinE in equation (i),

. f1. _5Jes '1—coa-’f i
sm(—sm 1) = [25%% (i)
" 8 2



Using the trigonometric identity, CI-Ass24

cos 2x = cos? x - sin? x

=¢0s 2x = €052 x - {1 - cos? x) [+, sin? x + cos? x = 1]
= €05 2X = €0s? x - 1 + cos?x

scos2x=2cos? x-1

Or,

2 cos? x =1 + cos 2x

1+cos2x
2

’1+c052x
= C05X = T‘

Replacing x by x/2,

= cos’x =

Ve, C0S X = 1
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29. Question

Choose the correct answe
T 4
cot(z—lcot la

A. 4
B.6
C.5
D. none o
Answer

We need to
cot(E— 2 cot
4

Let2cotl3 =y

Then,
_ y
13 =
cot 2
y
t==3
= CO >

Substituting 2 cot1 3 =y,

cote— 2 cot“S) = cot Z_y)

Using the trigonometric identity,

(A B) cotAcotB+1
cot(A—-B)= ————
cotB —cotA
50,
cot ¥ oty + 1
= cct(ﬂ 2cot™? 3) =
coty — cct4—

We know that,



tﬂ— 1
cot ;=
= cot(};chot'l 3) = % wli)

We know that, by trigonometric identity,

tan 2y — 2 tany
V=1 tan?y
Take reciprocal of both sides,

1 1-tan’y
tan2y  2tany

1—tan’y
Scot2y=—F—""—""-
2tany
=]
°'tan2y—c° Zy

2¥ _ ki
cot 7 1+2c0t2

y
ZZwt2 ;
B cot22—1—2cot§

v
2 coty

cotz% + 2cot%~ 1

P S
cotzi—2cot§—1

Put the value ofcot§= 3 derived above and also c::lt”;Ir =32=09,

9+2x3-1
T 9-2x3-1
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30. Question
Choose the correct answer

If tan'! (cot8) = 2 B, then ® =

A, -

I+
WA

w
H
| A

0
H
oA

D. none of these

Answer

Taking tang
= tan [tan (
Using property o
tan(tan'l A) = A
= cot 8 =tan 28
Or,

= tan 26 = cot O
Using the trigonometric identity,

tan 76 — 2tan@
N = e

2tanb o
“1-tanze °

Using the trigonometric identity,

to !
cotY=ne
2tan® 1

ql—tanzt}:tanﬁ

By cross-multiplying,



stan® x2tanB=1-tar? @ CI-Ass24

s2tan?B=1-tan? B

>2tan?0+tan?B8 =1

=»3tan’ B =1
=:>t:sz—1
-3
tanf = + 1
-_—> = —
V3
™ 1
Andtan—ﬁ=ﬁ-
b
=>tan9=:}:tang
Thus,
B—in
T 76

31. Question

Choose the corre

2a

1-a

S
-

Answer

We are given that,

__1( 2a )+ LT
sin 1+a2 cos 1+a2
Where, a, x € {0, 1).

We need to find the value of x.

Using property of inverse trigonometry,

2tan“a=sin‘1( 2a )
1+a2

2
=cos~! 1-a
1+a2

2tan'x =tan‘1( ol )
1—x2

Then, we can write as
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2a 1-—a? 2x
1 + -1~ )= tan™? (_)
sin (l + a3) cos 1+a2 an 1-—x2

»2tanla+2tanta=2tanl x
s4tanla=2tanlx
Dividing both sides by 2,

4tan"'a 2tan"'x
2 2

=

= 2tanla =tanlx

Using property of inverse trigonometry,

2a
Ztan™t!a = tan™? ( )
1—az2

Then,

= tan}! ( ) =tan"lx

1—a?

Taking tangent on both sides,

2a
= tan [tan‘1 (1 = az)] = tan[tan™* x]

2a
E =
1—a2
Or,
2a
D= ——
1—a?

32. Question

Choose the correct answer
The value of sin( Z(tan“l 0_?5]) is equal to

A.0.95

B. 1.5

C. 0.9%

D.sint 1.5

Answer

We need to find the value of sin (2(tan’! 0.75)).
We can re-write the equation,

sin (2(tan'1 0.75)) = sin (2 tan'1 0.75)

Using the property of inverse trigonometry,

2tan*x =sin?! ( - )
1+x2

Replace x by 0.75.

2tan™10.75 = sin™? (LO?S)
1+ 0.752



So,

sin (2(tan"! 0.75)) = sin (2 tan'! 0.75)

2x075
= sin(2(tan 1 0.75)) = sin (sin’1 (—)]

1+ 0752
15
— s . “1
s (5‘“ (1 n 0.5626))

=sin(sin” (1 55)
= S5Sin| sin 15676

= sin (2(tan’! 0.75)) = sin (sin'! 0.96)

Using the property of inverse trigonometry,
sin(sin1 A) = A

= sin (2(tan'! 0.75)) = 0.96

33. Question

Choose the correct answer

T \
- | is equal to

1

If x > 1, then 2 tan™ x + sin~
1+ x

A, dtan1x
B.0

C.

13 A

D.n
Answer
We are given that, x > 1.

We need to find the value of

2tan~1x + sin~?! ( - )
1+x2

Using the property of inverse trigonometry,

2tan 'x =sin™? ( - )
1+ x2

We can substitute sin~?! (i) by 2 tan'! x,
1+x-

So,
-1 in—1 2x -1 -1
2tan™x+sin™t|——=)=2tan""x+ 2tan""x
1+ x2

=4 tan’l x
34. Question

Choose the correct answer
The domain of cos™(x* — 4) is

A. [3, 5]
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B. [1, 1] CLASS24
[~ ][ ]
0. [ [N

Answer

We need to find the domain of cos'! (x2 - 4).

We must understand that, the domain of definition of a function is the set of "input" or argument values for
which the function is defined.

We know that, domain of an inverse cosine function, cos® x is,
x € [-1, 1]

Then,

(x2-4)e[-1,1]

Or,

l=x-4=1

Adding 4 on all sides of the inequality,
l+4=x-4+4=1+4

=3=x=5

Now, since x has a power of 2, so if we take square roots on all sides of the inequality then the result would
be

> +/3=x=+V5
But this obviously isn’'t continuous.

So, we can write as

x € [-V5,—v3] u[v3.V5]
35. Question

Choose the correct answer

3 \s
The value of tm]{ cos”! —+ tan ™! lJ is
5

19

|

Answer

We need to find the value of
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3
tan (cos“— +tan~t-
5 4

Using the property of inverse trigonometry,

cos™ix =tan™! (

Just replace x by 3/5,
cos

So,

3 1 .
tan|cos 1= +tan™?! —) =tan| tan7!| —— |+ tan?
( 5 4 3

=tan| tan?!

=tan| tan?

=tan{ tan*

=t (t —‘(4 5)+ta —11)
=tan|(tan 5 3 1 P

4+t “1)
3 i

ul el i

=tan (mn“

Using property of inverse trigonometry,

A+B

-1 -1lp _ -1

tanT"A+tan™" B =tan (1—AB)
1
4

(56

=tan| tan—

-1 12

=tan| tan
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19
- an~1 =
=tan (tm P )

Using the property of inverse trigonometry,
tan(tan'l A) = A

t ( 3 4 tan 1)
= @n\cos "— dan T — 1=
5 4

19
8

Very short answer

1. Question

Answer each of the following questions in one word or one sentence or as per exact requirement of the
question:

. . A3 )
Write the value of sin™" | ——— |+cos —:J.
3

Answer

Letsin! (-v3/2) = xand cos* (-1/2) = y

= sinx={-vV3/2) and cos y = -1/2

We know that the range of the principal value branch of sinl is (-n/2, n/2) and cos® is (0, m).
We also know that sin {(-nf 3) = (-V3/ 2) and cos {2n/3) = -1/2

~ Value of sin! (-v3 /2) + cos? (-1/2) = -n/3 + 2n/3

=1/3

2. Question

Answer each of the following questions in ane word or one sentence or as per exact requirement of the
question:

Write the difference between maximum and minimum values of sin"1x for x € [-1, 1].
Answer

Let f (x) = sin'l x

Far x to be defined, -1 = x =1

For-1=x =1, sinl(-1) = sin’! x = sin! (1)

=-n/2 = sin'l x = /2

=-m2 =f(x)=n/2

Maximum value = /2 and minimum value = -n/2

. The difference between maximum and minimum values of sin'l x = /2 - (-n/2) = 2n/2
=T

3. Question

Answer each of the following questions in one word or one sentence or as per exact requirement of the
question:

.
)

1 v+sin~lz = 2=, then write the value f x + y + z.
- -

1

If sin™ x +sin~

Answer



Given sin'l x + sinly + sin'l z = 3n/2 CLASS24

We know that maximum and minimum values of sin'! x are n/2 and -1/2 respectively.
ssinlx+simly +sinlz=n/2+n/2+ n/2

ssinlx=m2, sinly =2, sinlz=n/2

=2x=1y=1z=1

2X+y+z=1+14+1=3

WX+y+z=3

4. Question

Answer each of the following questions in one word or one sentence or as per exact requirement of the
guestion:

o BT

If x > 1, then write the value of sin'l( . ] in terms of tan! x,

1+x°
Answer
Givenx>1
=tanB>1
=E<9<E
4 2
Multiplying by -2,
= - < -20 < _ZE

Subtracting with m,

T
#0<T[—2T{<E

We know that sin 20 — —=22
1+tan®@

Puttan 6 = x

n20 = —
= s5in26 = 17 x2
Forx > 1,

i 26 2
= _ =

sin(m ) 72
20 = si *1( 2x )
= 11— 20 =sin
1+ x2

Since x=tan 6

208 =tanlx

o 2 1
~ sin =n—2tan " x
1+x2

5. Question

Answer each of the following questions in one word or one sentence or as per exact requirement of the
guestion:



4

[
If x < 0, then write the value of cos‘ll
1+x

Answer
Givenx <0
-0 <Xx<0
Letx =tan @

=>-w<tan B <0
Tco<o
= ——
2

Multiplying by -2,

>m<-20<0

We know that cog 20 — 1=t228
1+tan® @
Puttan© = x
o 1-—x?
= cos(— =
(=26) 1+x2

1-— 2
- 20 = cos M ——_
1+x2

Sincex=tan B

=28 =tanlx

_ (T -
~ COoS = —JZlan " x
1+x2

6. Question

in terms of tan™! x.

CLASS24

Answer each of the following questions in ane word or one sentence or as per exact requirement of the

question:
. g 41 )
Writ the value of tan " x + tan L_ | forx = 0.
x)
Answer

Giventan~1x +tan™! G) forx >0

We know thattan™x+tan 'y =tan™?! (%’;)lf Xy=>1

1
1 X‘E—q
= tan 'x +tan? (—) =tan~! — 7
- 1 "X‘f"§
X2 +1
=tan!|—&
= tan! (o)
T
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1 T
~tan~'x +tan™? (—) ==
X 2

7. Question

Answer each of the following questions in one word or one sentence or as per exact requirement of the
question:

, - 41
Write the value of tan ‘1.; + tan 1( — | forx < 0.
\

X

Answer

Given tanl x + tanl (1/x) forx <0

We know thattan™'x+tan™'y = —m+ tan™?! (ﬁ)lf x<0, y<0

1
1 X+€
= tan"*x +tan™? (—) =-—m+tan? —
1—X+§
x2+1
1| x

=-—T+tan-

-+ tan! (w)

-+ n/2

= /2

~tanl x + tanl (1/x) = -m/2
8. Question

Answer each of the following questions in one word or one sentence or as per exact requirement of the
question:

?

1 2w 1 s
What is the value of cos™ '(cogg | +~gin~ ‘ sin }
;

)

3
Answer
We know that sin'! (sin ®) =n - 8, if 8 € [n/2, 3n/2] and cos™! (cos ) = 6, if 6 € [0, ]

: - 2n - i
Given cgs™?! (cos?) +sin™? (sm ?)

2n + ( 2rr)
=3 7\"73
=n
~ cos™! (cos ZH) + sin™? (Sinzn) =1
- 3 )=

9, Question

Answer each of the following questions in one word or one sentence or as per exact requirement of the
question:

{ I 1 —_ x:
If -1 < x < 0, then write the value Ofsin_ll + cos_1

R

Y

1+x~

1+x
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Given-1<x<0

. 2x _ A 1 f1-%x* _ .
sin™! (—) =2tan 'x,if—1<x < 1and cos 1(—;) = —2tan1x,if -
14x~ 14x=

w<x=<0

We know that
; .1 f 2x -1 1—x3)

Givensin* (2) + cos™ (32

=2tanlx-2tanlx

=0

10. Question

Answer each of the following questions in one word or one sentence or as per exact requirement of the
question:

Writ the value of sin (cot™® x).
Answer

Given sin (cc:nt'1 X)

Letcotlx =8

»>x=cot8

We know that 1 + cot? 8 = cosec’ &
=1+ x2 = cosec? B

We know that cosec 8 = 1/sin 8

1+x? L
= xX“ =
sin? 0
1ol
= s5in“0 =
1+x2
. 9 1
= s5lnv =-——
v1+x2
3,
~ sin(cot™1x) = ——
( ) v1+4x2

11. Question

Answer each of the following questions in ane word or one sentence or as per exact requirement of the
question:

Write the value of cog™

Answer

Let cos (1/2) = x and sin (1/2) = y

=cosx =1/2andsiny = 1/2

We know that the range of the principal value branch of sin'l is (-n/2, n/2) and cos! is (0, m).
We also know that sin (nf 6) = 1/2 and cos (n/3) = 1/2

= Value of cos’! (1/2) + 2sin! (1/2) = w/3 + 2(n/6)

=1/3 + n/3



= 23 CLASS24

~ Value of cos® (1/2) + 2sin™ (1/2) = 2n/3
12. Question

Answer each of the following questions in ane word or one sentence or as per exact requirement of the
question:

Write the range of tan 1x.

Answer

We know that range of tan'l x = (-n/2, n/2)
13. Question

Answer each of the following questions in ane word or one sentence or as per exact requirement of the
guestion:

Write the value of cos 1(cos 1540°).

Answer
Given cos ! {cos 1540°)
= cos}{cos (1440° + 100°)}

cos'l{cos (360° x 4 + 100°)}

We know that cos (2n + 8) = cos 8

= cos{cos 100°}

We know that cos'! (cosB) = 8 if 8 € [0, n]
= 100°

~ cos! (cos 1540°) = 100°

14. Question

Answer each of the following questions in one word or one sentence or as per exact requirement of the
guestion:

Write the value of sin™1 (sin(-600°)).
Answer

Given sin'! (sin (-600°))

= sin'! (sin (-600 + 360 x 2))

We know that sin (2nn + 8) =sin 8
= sin (sin 120°)

We know that sin'l (sin 8) =mn - 8, if 8 € [n/2, 3n/2]
= 180° - 120°

= 60°

~ sin’! (sin (-600°)) = 60°

15. Question

Answer each of the following questions in one word or one sentence or as per exact requirement of the
question:



7

Write the value of ¢os

. 1
2s1n 1—}-

\
Answer

Given cos (2sin’! 1/3)

Vi-x

l "
t

We know thatsin™'x = tan™?!

=

Wl

=cos| 2tan™!

1
-1_3
=cos| 2tan'—=
2z
3
(Zt 1 )
= Cas an PR
2V2
We know that2tan™2x = cos_lk_xf
1+x=
2
i (23/5)
= cos ms‘lﬁ
+Fﬂ
2V2
1
_138
1
l+3
7
9
cos (2 sin™! 1) -
B 3/

16. Question

CLASS24

Answer each of the following questions in ane word or one sentence or as per exact requirement of the

question:
Write the value of sin"1{1550°).

Answer
Given sin'l (sin 1550°)
= sin'! (sin (1440° + 110°))

sin'! {sin (360° x 4 + 110°))

We know that sin (2nn + 8) = sin 8

= sin’! {sin 110°)

We know that sin'l (sin8) = n - 8, if 8 € [/2, 3n/2]

= 180° - 110°
= 70°



~. sin® (sin 1550°) = 70° CLASS24

17. Question

Answer each of the following questions in one word or one sentence or as per exact requirement of the
question:

_14]
cos  — |-
J;

(1

Evaluate: sip|

\

12|

Answer

Given sin (1/2 cos'! 4/5)

We know that COSilJ{ =2 t31171 1-x
14x
N 1
=sin| =X 2tan™
2
1
=sin|tan! —)
(73
We know thattan *x = sin™* ——
v 1+x=
1
=sin| sin7?! 3

Y+ ()

1
—_3_
V10
3
1
_m
, (1 _14) 1
S SM{SC0S "= =——=
2 5 V10

18. Question

Answer each of the following questions in one word or one sentence or as per exact requirement of the
question:

Evaluate: sin{ tan

|

Answer

Given sin (tan'! 3/4)

We know that tan™'x = sin~

1 X

Vies®

b | L

=sin| sin™?!

_|..

J+ )

We know that sin (sin'1 0)=86
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|

Ul W s w

3 3
-~ sin [ tan? )_
sm(m =

19. Question

Answer each of the following questions in one word or one sentence or as per exact requirement of the
question:

3m)
4

]

Write the value of cos_l{ tan

Answer
Given cos! (tan 3n/4)

= cos’! {tan (- n/4))

We know thattan (n- 8) =-tan 6

cos ! (-tan m/4)

cos ! (-1)

We know thatcos! x = n

~ cos! (tan 3n/4) = 1t

20. Question

Answ_er each of the following questions in one word or one sentence or as per exact requirement of the
question:

) R |
Write the value of co;[ism - J
3

Answer

Given cos (2sin! 1/2)

cos (2x n/6)

cos (n/3)

=172
wcos(2sinl1/2) =172
21. Question

Answer each of the following questions in one word or one sentence or as per exact requirement of the
question:

Write the value of cos‘l(cos 350°) - sin‘l(sin 350°).
Answer

Given cos™ (cos 350°) - sin’! (sin 350°)

= cos™ [cos (360° - 10°)] - sin” {sin (360° - 10°)]

We know that cos {(2n-0) = cos B and sin (2n-6) = -sin B



= cos! (cos 10°) - sin"! {-sin 10°)

We know that cos™ (cos 8), if 8 € [0, ni] and sin (-8) = -sin 6

= 10° - sin'! (sin (-10°))

We know that sin? (sinB@) =16, if 6 € [-1/2, /2]

= 10° - (-10°)
= 10° + 10°
= 20°

~ cos™! {cos 350°) - sin’! (sin 350°) = 20°

22. Question

CLASS24

Answer each of the following questions in one word or one sentence or as per exact requirement of the

guestion:

. af 1 a3
Write the value of cos~ [ —CO0S 1,_}.
2 5

Answer

Given cos? (1/2 cost 3/5)

We know that pgs= vy = 2 cos™* ’l—-H—
2

2 L |rE
= oS EXZCOS —
8
= i
(cos| cos 10
2
i)
10

1 3 4
. 2 -1 =
- oS (st 5) 3

23. Question

Answer each of the following questions in one word or one sentence or as per exact requirement of the

guestion:

T .
If mn'lx m,rgm'I y=—, then write the value of x + v + xv.

o

Answer

Giventan! x + tanly =n/4

We know thattan™ x + tan™ !y = tan™ (



x+y\ w
= mn*( 2 ) =—
1—xy) 2
X+y
= tan! (1 _‘3}') =tan"1(1)
x+y
= =
1—xy

=>X+y=1-xy
2xXx+y+xy=1
SX+y+xy=1

24. Question

CLASS24

Answer each of the following questions in one word or one sentence or as per exact requirement of the

question:

Write the value of cos™! (cos B).

Answer

Given cos! (cos 6)

We know that cos'! (cos8) = 2n -6, if 6 € [, 2n]

=2n-6
. cos! (cosB) =2n-6

25. Question

Answer each of the following questions in one word or one sentence or as per exact requirement of the

guestion:

- . = [ I
Write the value of sip 1; CoS— |-
\ 9

Answer

Given sin'l {cos n/9)

We know that cos 8 = sin (nf2 - 9)

sin'! (sin (/2 - n/9))

= sin! (sin 7n/18)

We know thatsin! (sinB8) =8
= 7n/18

~sin’! (cosm/9) = 7n/18

26. Question

Answer each of the following questions in one word or one sentence or as per exact requirement of the

question:

i ¢ -
Write the value of sin [?— Sl

Answer

Given sin (/3 - sim! (-1/2))




We know thatsin'l (-8) = -sin'l @

sin (/3 + sin! (1/2) 0)
sin (/3 + 1/6)

sin (n/2)

=1

~osin (/3 - sinl (-1/2)) = 1

27. Question

CLASS24

Answer each of the following questions in one word or one sentence or as per exact requirement of the

guestion:

Write the value of tmf1 r:(tan

l,

—
—
N
|

Answer

Given tan! {tan (15n/4)}

= tanl {tan (4n - n/4)}

We know thattan (2m - 8) = -tan 6

= tan'! (-tan n/4)

tamr® (-1)
= .|'[j4
~ tan {tan (15n/4)} = -n/4

28. Question

Answer each of the following questions in one word or one sentence or as per exact requirement of the

question:

. ]
Write the value of 25in_1 — BCoee
=

Answer

Given 2sin’! 1/2 + cos! (-1/2)

=mn/6 + (n-n/3)
_JT—GJT—ZH
N 6

_Srr

6

~ 2sim! 1/2 + cos! (-1/2) = 5w/6

29. Question

[

1o ] =

Answer each of the following questions in one word or one sentence or as per exact requirement of the

question:

] 1 a 1fa
Write the value of tan~' = —tan 1{

Ld =

Answer



. i a _ a—b
Giventan™*= — tan™! (—)
b a+b

_ -1 a+
TR EED
[a? + ab — ab + b?
=tan™ ba +f;)(2a: r:?— ab
b(a+ b)
=tan~! M]
a? + b2
=tam! (1)
= /4

30. Question

CLASS24

Answer each of the following questions in one word or one sentence or as per exact requirement of the

question

Write the value of cos—l[

Answer

Given cost (cos 2r/4)

We know that cos! (cos 8) =8

= 2n/4
= n/2

~ cos™! (cos 2m/4) = /2

31. Question

27
cos—
4

Answer each of the following questions in one word or one sentence or as per exact requirement of the

question

Show that sin ! (Zx\h - ] =2sin"'x.

Answer

Given LHS = sin! (2x - v (1 - x2))

Let x =sin ©

= sinl (2sin 8 v (1 - sinZ 8))

We know that 1 - sin?8 =cos2 ®

=20
=2sim!

= RHS

sin'l (2 sin 8 cos 8)

sin'! (sin? 8)

X



asinl (2x- v (1-x2) = 2sinl x CLA5524

32. Question

Answer each of the following questions in one word or one sentence or as per exact requirement of the
question:

(V]
=]

f
Evaluate: :,'in_lt sin —_
3
\ - J

Answer
Given sin'l (sin 3n/5)

We know that sin'l (sin 8) = - B, if 6 € [n/2, 31/2]

n-3n/5

= 2n/5

& sin'l (sin 3n/5) = 2n/5
33. Question

Answer each of the following questions in one word or one sentence or as per exact requirement of the
question:

If Ian"l(\/;)—e- cot 'y =g, find x.

-

Answer

Given tan'! (v3) + cot! x = 11/2

= tan! (v3) = nf2 - cot’ x

We know that tan! x + cot! x = n/2

> tanlv3 =tanl x

L X=v3

34. Question

Answer each of the following questions in one word or one sentence or as per exact requirement of the

question:

. 1) _ T :
If sin l[—]—cos Ly =2, then find x.
| 3 2

Answer

Given sin'! (1/3) + cos! x =nf2

= sin"1 (1/3) = /2 - cos x

We know that sin! x + cos! x = /2
=sint (1/3) = sinl x

WX =1/3

35. Question

Answer each of the following questions in one word or one sentence or as per exact requirement of the
gquestion:



s
Write the value of sin'li
\

o -

\

s | =

Answer
Given sin'! (1/3) - cos! (-1/3)

We know that cos! (-8) = -cos1 8

- )-[o- )

1 1
=sin =l —-m7T+ -1 (7)
sin (3) T+ cos 3

1 1 T
EEECRES Y el P -1{_Z)=_=
- s (3) o ( 3) 2

36. Question

"_Nl’—'

CLASS24

Answer each of the following questions in one word or one sentence or as per exact requirement of the

question:
If 4sin"! x + cos’!
Answer

Given4dsimlx +coslx=n

We know thatsin x + cos® x = n/2

so—1 e
= 4s5in"x +E -Sin""x =11
I 71 ]T
= 3sin"x =1 ——
2
3sin! z
= 3sin" x =—
2

. 1 H
=8Nty =—
6

1
= ginly =gsin"l=

LX =172

37. Question

X =, then what is the value of x?

Answer each of the following questions in one word or one sentence or as per exact requirement of the

question:

If x < 0, y < 0 such that xy = 1, then write the value of tanl x + tan'l y.

Answer
Givenifx <0,y < 0QOsuchthatxy=1

Also given tan'l x + tarly



xa2) CLASS24

We know thattan™*x + tan™ !y = tan™* (H}.

x4y
=—m+tan? (—J )
1—xy

X+
=—m+tan~! (1 y)

= -n + tan! ()

LT
= —T —
2

T
~tanlx +tanly = -

38. Question

Answer each of the following questions in one word or one sentence or as per exact requirement of the
question:

{

H_X" |7

What is the principal value of sin~

Answer
Given sin'l (-v3/2)

We know thatsin! (-8) = -sin'l (8)

-sin (V3/2)

= -n/3

~osint (-v3/2) = -n/3

39. Question

Answer each of the following questions in one word or one sentence or as per exact requirement of the

question:

Write the principal value of si;fl{—

12| —

Answer
Given sin'! {-1/2)
We know that sin'l (-8) = -sin’! (8)

-sinl (1/2)

= 1n/6
~sin (-1/2) = /6
40. Question

Answer each of the following questions in one word or one sentence or as per exact requirement of the
question:

2 . of . 2=
COST +51n Sl — |.
o)

Write the principal value of cos ™

\ o



Answer CLASSZ4

We know that sin! (sin®)=mn-06,if 6 € [n/2, 3n/2] and cost (cosB) =86,ifee[0,mn]

. _ 2m - .2
Given cos~! (cos ?) +sin~t (sm?)

3 3
=
71( IZJrr)+ . 71( ] ZH)
~ CoS cos— | +sin “(sin—|=m
3 3

41. Question

Answer each of the following questions in one word or one sentence or as per exact requirement of the
guestion:

Write the value of tan

2tan ! J

rJ'|| Pt

Answer
Lettan 8 = 1/5

Given tan (2 tan'! 1/5) = tan 26

2tand
1-tan®8

We know that tqn 26 =

_ ZXE

1

1-35
2
_5
S 24
75
_ 5
12

1 5
- t Zt _1— = —
an{2tan 5) 2

42. Question

Answer each of the following questions in one word or one sentence or as per exact requirement of the
question:

=]
Write the principal value of mn'i(l) + cog" - }
Y

Answer

Given tan'l (1) + cos'L (-1/2)

We know that cos! (-8) =n-cos18
n i3

=z+h—ﬂ

_Ir+2:r
T4 3



3m+ 8w
12
11n
S 12
1 11w
~tan~ Y1)+ —1(__)=___
an~*(1) + cos 2 12

43. Question

CLASS24

Answer each of the following questions in one word or one sentence or as per exact requirement of the

guestion:

Write the value of tan™ Ijsin

P

2¢os

/ . g ]l

Answer

Given tan! {2 sin (2 cos! v3/2)}
= tan'! {2 sin (2 cos’! cos n/6)}
=tan'! {2 sin (2 x /6)}

=tan! {2 sin (n/3)}

= tarml {2 x V3/2}

= tan'l {v3}

=n/3

s tan {2 sin (2 cos™ v3/2)} = /3

44. Question

Answer each of the following questions in one word or one sentence or as per exact requirement of the

question:

) s

Write the principal value of 4,7t /3 = cor™! _\/E

Answer
Given tan'! v3 + cotl v3

We know that tan! v3 = n/3 and cot? v3 = /6

_‘H_{_T[
36

45. Question

Answer each of the following questions in ane word or one sentence or as per exact requirement of the

question:

Write the principal value of cos 1{cos 680°).

Answer



Given cos! (cos 680°) CLA5524

= cos! (cos (720° - 40°))

cos {cos (2 x 360° - 40°))

cos! (cos 40°)

= 40°
~ cos! (cos 680°) = 40°
46. Question

Answer each of the following questions in one word or one sentence or as per exact requirement of the
question:

i
-1

X . e |
Write the value of giny | s —J
\ 5

Answer

Given sin'l (sin 31/5)

sin'! [sin (n - 2n/5)]

sin" (sin 2n/5)

2n/5

~ sint (sin 3m/5) = 2n/5
47. Question

Answer each of the following questions in one word or one sentence or as per exact requirement of the
guestion:

Write the value of gec_ll

12| —

Answer
We know that the value of sec® (1/2) is undefined as it is outside the range i.e. R - (-1, 1).
438. Question

Answer each of the following questions in one word or one sentence or as per exact requirement of the
guestion:

( 4
Write the value of cos™! L Cogl_ 1 :
%

Answer

Given cos'! (cos 14n/3)

cos! [cos (4m + 2n/3)]

cos’! (cos 2m/3)

= 2n/3

~ cos (cos 14n/3) = 2n/3
49, Question

Answer each of the following questions in one word or one sentence or as per exact requirement of the
question:



CLASS24

Write the value of ctas(sin"l x+cosix ),\ x|=1.

Answer

Given |x] =1

=2+x=1

=x=lor-x=1

2>2x=lorx=-1

SxE[L 1]

Now also given cos (sin't x + cos! x)
We know thatsin'l x + cos! x = nf2
~cos (sim! x + cosl x) = cos (W/2) =0
50. Question

Answer each of the following questions in one word or one sentence or as per exact requirement of the
guestion:

. 1 il

St X +C€0S X

= MA=as 2 ,whenx:'\/g
B -

Write the value of the expression tan

Answer
Gi sin"tx+cos tx L3
wventan(——— |whenx = —
= =
. m . _1V3 V3
sim*x+costx Sin~' -+ cos™ 5=
= tan _2_ =tan 4 5

We know thatsin! x + cos® x = n/2

= tan (n/4)

sinT'x+cos1x
= tan —— 1

51. Question

Answer each of the following questions in one word or one sentence or as per exact requirement of the
question:

v

Ji

J

1

13| —

{
Write the principal value of sin ™ {COS{ sin”

Answer

Given gin~? [COS (55”_13}
o )
=sin~? [(‘os (g)}

= sin't (1/2)



CLASS24

. _1( . ?f)
= Sin Sin -
3

Il
wlA

52. Question

Answer each of the following questions in one word or one sentence or as per exact requirement of the

guestion:
V3
72 .

We know that the value of cosec! (v3/2) is undefined as it is outside the range i.e. R-{-1,1).

The set of values of cos ec'1

Answer

53. Question

Answer each of the following questions in one word or one sentence or as per exact requirement of the
gquestion:

for x < 0 in terms of cot 1(x).

Write the value of tan_ht l
X,

Answer

Given tan'l (1/x)

1
=tan~! (—;)fm‘ x<0

1
=—tan™? (—)
X

cotl x

-{m- cot! X)
=-m+ cotlx
54. Question

Answer each of the following questions in one word or one sentence or as per exact requirement of the
guestion:

Write the value of cot™1(-x) for all x € R in terms of cot™1x.

Answer

We know that cot? (-x) = m - cot? (x)

~ The value of cot™ {(-x) for all x € R in term of cot! x is - cot! (x).
55. Question

Answer each of the following questions in ane word or one sentence or as per exact requirement of the
question:

tan~! x +cot™! x

, 1
Write the value of cos[ , when x =——.
L 3 NE)
Answer
—1 .. —1
Given cos (W) whenx = — %
v



We know that tan! x + cot! x = /2 CLA5524

cos (1/6)
¥3/2

56. Question

Answer each of the following questions in one word or one sentence or as per exact requirement of the
question:

If cos(mn”l X +cot™! .\5) = (), find the value of x.

Answer

Given cos {tanl x + cotl v3) =0

= cos (tant x + cot! V3) = cos (/2)
= tan! x + cot! v3 = 1/2

We know that tan'! x + cot! x = n/2
A X =V3

57. Question

Answer each of the following questions in one word or one sentence or as per exact requirement of the
question:

i

Find the value of 2 sec™ 2 = siﬂ_lt é ‘

Answer

Given 2 sec’! 2 + sin’! (1/2)

= 2 sec’! (sec n/3) + sin'! (sin 1/6)
= 2 (n/3) + /6

= 51/6

58. Question

Answer each of the following questions in one word or one sentence or as per exact requirement of the
guestion:

-~

2 \
If cos ,c,‘in_lT + 305-1 X )‘ = (), find the value of x.
‘\

Answer

Given cos (sin1 2/5 + cos x) =0

= cos (sin! 2/5 + cos! x) = cos (n/2)
= sin't 2/5 + cos’! x = n/2

We know that sin'! x + cost x = /2
X =2/5

59. Question

Answer each of the following questions in one word or one sentence or as per exact requirement of the
question:



) CLASS24

Find the value of cos'][cos—

Answer
Given cos’! (cos 131/6)

= cos'! [cos (2n + /6)]

cos! (cos n/6)

= /6

» cost (cos 13n/6) = n/6
60. Question

Answer each of the following que
guestion:

ord or one sentence or as per exact requirement of the

Find the value of tan ™" (t

Answer
Given tan! (ta
= tan! [tan
= tar! (ta
/8

~tan! (te
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