11. Compound Interest Exercise 11A

1. Question

Answer

Present value = Rs.2500

Interest rate = 10% per annum

Time = 2 years

Amount (A) = $P(1 + R/100)^n$

[Where, P = Present value

R = Annual interest rate

n = Time in years]

 $\therefore A = 2500 (1 + 10/100)^2$

 $\Rightarrow A = 2500 (11/10)^2$

 $\Rightarrow A = 2500 \times 121/100$

 $\Rightarrow A = 25 \times 121$

 $\Rightarrow A = 3025$

∴ Amount = Rs.3025

∴ Compound interest = Rs.(3025 - 2500)

= Rs.525

2. Question

Answer

Present value = Rs.15625

Interest rate = 12% per annum

Time = 3 years

Amount (A) = $P(1 + R/100)^n$ [Where, P = Present value

R = Annual interest rate

n = Time in years]

 $\therefore A = 15625 (1 + 12/100)^3$

 $\Rightarrow A = 15625 (112/100)^3$

 $\Rightarrow A = 15625 (28/25)^3$

 \Rightarrow A = 15625 \times 21952/15625

 $\Rightarrow A = 21952$

∴ Amount = Rs.21952

- .: Compound interest = Rs.(21952 15625)
- = Rs.6327

3. Question

Answer

Present value = Rs.5000

Interest rate = 9% per annum

Time = 2 years

Simple interest (SI) = PRT/100 [where, P = Present value

R = Interest rate, T = Time

 \therefore SI = $(5000 \times 9 \times 2)/100$

 \Rightarrow SI = 50 \times 9 \times 2

 \Rightarrow SI = 900

Now,

Compound interest (CI),

Amount (A) = $P(1 + R/100)^n$ [Where, P = Present value

R = Annual interest rate

n = Time in years]

 $\therefore A = 5000 (1 + 9/100)^2$

 $\Rightarrow A = 5000 (109/100)^2$

 $\Rightarrow A = 5000 (1.09)^2$

 $\Rightarrow A = 5000 \times 1.1881$

 $\Rightarrow A = 5940.5$

∴ Amount = Rs.5940.5

 \therefore Compound interest = Rs.(5940.5 - 5000)

= Rs.940.5

Now,

Difference between the simple interest and the compound interest = (CI - SI)

= (940.5 - 900)

= 40.5

4. Question

Answer

Present value = Rs.25000

Interest rate = 8% per annum

Time = 2 years

Amount (A) = $P(1 + R/100)^n$ [Where, P = Present value

CLASS24

R = Annual interest rate

n = Time in years]

 $\therefore A = 25000 (1 + 8/100)^2$

 $\Rightarrow A = 25000 (108/100)^2$

 $\Rightarrow A = 25000 (1.08)^2$

 \Rightarrow A = 25000 \times 1.1664

 $\Rightarrow A = 29160$

∴ Amount = Rs.29160

5. Question

Answer

Present value = Rs.20000

Interest rate = 12% per annum

Time = 2 years

Simple interest (SI) = PRT/100 [where, P = Present value

R = Interest rate, T = Time

 \therefore SI = $(20000 \times 12 \times 2)/100$

 \Rightarrow SI = 200 \times 12 \times 2

 \Rightarrow SI = 4800

Now,

Amount (A) = $P(1 + R/100)^n$ [Where, P = Present value

R = Annual interest rate

n = Time in years]

 $\therefore A = 20000 (1 + 12/100)^2$

 $\Rightarrow A = 20000 (112/100)^2$

 $\Rightarrow A = 20000 (1.12)^2$

 $\Rightarrow A = 20000 \times 1.2544$

 $\Rightarrow A = 25088$

∴ Amount = Rs.25088

∴ Compound interest = Rs.(25088 - 20000)

= Rs.5088

Now,

(CI - SI) = 5088 - 4800

= Rs.288

... The amount of money Harpreet will gain after two years = Rs.288

6. Question

CLASS24

Answer

Present value = Rs.64000

Interest rate = (15/2) % per annum

Time = 3 years

Amount (A) = $P(1 + R/100)^n$ [Where, P = Present value

R = Annual interest rate

n = Time in years

 $\therefore A = 64000 [1 + (15/2 \times 1/100)]^3$

 $\Rightarrow A = 64000 [1 + 3/40]^3$

 $\Rightarrow A = 64000 (43/40)^3$

 $\Rightarrow A = 64000 \times \frac{43}{40} \times \frac{43}{40} \times \frac{43}{40}$

 \Rightarrow A = 1 \times 43 \times 43 \times 43

 $\Rightarrow A = 79507$

... Manoj will get an amount of Rs. 79507 after 3 years.

7. Question

Answer

Present value = Rs.6250

Interest rate = 8 % per annum

Time = 1 years

∴ Interest is compounded half-yearly.

 \therefore Amount (A) = P [1 + (R/2)/100]²ⁿ [Where, P = Present value

R = Annual interest rate

n = Time in years]

 $\therefore A = 6250 [1 + (8/2)/100]^2$

 $\Rightarrow A = 6250 [1 + 4/100]^2$

 $\Rightarrow A = 6250 [26/25]^2$

 $\Rightarrow A = 6250 \times 26/25 \times 26/25$

 \Rightarrow A = $10 \times 26 \times 26$

 $\Rightarrow A = 6760$

∴ Amount = Rs.6760

:. Compound interest = Rs.(6760 - 6250)

= Rs.510

.. Divakaran gets a CI of Rs.510.

8. Question

CLASS24

Answer

Present value = Rs.16000

Interest rate = 10% per annum

Time = (3/2) years

: Interest is compounded half-yearly.

 \therefore Amount (A) = P [1 + (R/2)/100]²ⁿ [Where, P = Present value

R = Annual interest rate

n = Time in years]

 $\therefore A = 16000 [1 + (10/2)/100]^3$

 $\Rightarrow A = 16000 [1 + 5/100]^3$

 $\Rightarrow A = 16000 [1 + 1/20]^3$

 $\Rightarrow A = 16000 [21/20]^3$

 $\Rightarrow A = 16000 \times 21/20 \times 21/20 \times 21/20$

 \Rightarrow A = 2 \times 21 \times 21 \times 21

 $\Rightarrow A = 18522$

∴ Amount = Rs.18522

Exercise 11B

1. Question

Answer

Present value = Rs.6000

Interest rate = 9% per annum

Time = 2 years

Amount (A) = $P(1 + R/100)^n$ [Where, P = Present value

R = Annual interest rate

n = Time in years

 $A = 6000 (1 + 9/100)^2$

 $\Rightarrow A = 6000 (109/100)^2$

 $\Rightarrow A = 6000 \times 109/100 \times 109/100$

 \Rightarrow A = 6 \times 109 \times 109/10

 $\Rightarrow A = 7128.6$

∴ Amount = Rs.7128.6

... Compound interest = Rs.(7128.6 - 6000)

= Rs.1128.6

CLASS24

2. Question

Answer

Present value = Rs.10000

Interest rate = 11% per annum

Time = 2 years

Amount (A) = $P(1 + R/100)^n$ [Where, $P = Present \ value$

R = Annual interest rate

n = Time in years]

 $A = 10000 (1 + 11/100)^2$

 $\Rightarrow A = 10000 (111/100)^2$

 $\Rightarrow A = 10000 \times 111/100 \times 111/100$

 $\Rightarrow A = 1 \times 111 \times 111$

 $\Rightarrow A = 12321$

∴ Amount = Rs.12321

 \therefore Compound interest = Rs.(12321 - 10000)

= Rs.2321

3. Question

Answer

Present value = Rs.31250

Interest rate = 8% per annum

Time = 3 years

Amount (A) = $P(1 + R/100)^n$ [Where, P = Present value

R = Annual interest rate

n = Time in years

 $\therefore A = 31250 (1 + 8/100)^3$

 $\Rightarrow A = 31250 (1 + 2/25)^3$

 $\Rightarrow A = 31250 (27/25)^3$

 \Rightarrow A = 31250 \times 27/25 \times 27/25 \times 27/25

 $\Rightarrow A = 31250 \times 19683/15625$

 $\Rightarrow A = 2 \times 19683$

 $\Rightarrow A = 39366$

∴ Amount = Rs.39366

∴ Compound interest = Rs.(39366 - 31250)

CLASS24

4. Question

Answer

Present value = Rs.10240

Interest rate = (25/2) % per annum

Time = 3 years

Amount (A) = $P(1 + R/100)^n$ [Where, P = Present value

R = Annual interest rate

n = Time in years]

 $\therefore A = 10240 [1 + (25/2)/100]^3$

 $\Rightarrow A = 10240 [1 + 1/8]^3$

 $\Rightarrow A = 10240 [9/8]^3$

 \Rightarrow A = 10240 \times 9/8 \times 9/8 \times 9/8

 $\Rightarrow A = 10240 \times 729/512$

 $\Rightarrow A = 20 \times 729$

 $\Rightarrow A = 14580$

∴ Amount = Rs.14580

:. Compound interest = Rs.(14580 - 10240)

= Rs.4340

5. Question

Answer

Present value = Rs.62500

Interest rate = 12 % per annum

Time = 2 years 6 month = (2 + 1/2) years = (5/2) years

Amount (A) = $P(1 + R/100)^n$ [Where, P = Present value

R = Annual interest rate

n = Time in years

 $\therefore A = 62500 (1 + 12/100)^2 \times [1 + (1/2 \times 12)/100]$

 \Rightarrow A = 62500 (1 + 3/25)² × [1 + 6/100]

 \Rightarrow A = 62500 (28/25)² × [106/100]

 \Rightarrow A = 62500 \times 28/25 \times 28/25 \times 106/100

 $\Rightarrow A = 625 \times 784/625 \times 106$

 \Rightarrow A = 1 \times 784 \times 106

 $\Rightarrow A = 83104$

∴ Amount = Rs.83104

CLASS24

∴ Compound interest = Rs.(83104 - 62500)

= Rs.20604

6. Question

Answer

Present value = Rs.9000

Interest rate = 10% per annum

Time = 2 years 4 month = (2 + 1/3) years = (7/2) years

Amount (A) = $P(1 + R/100)^n \times [1 + (1/3 \times R)/100]$

[Where, P = Present value

R = Annual interest rate

n = Time in years

 $\therefore A = 9000 (1 + 10/100)^2 \times [1 + (1/3 \times 10)/100]$

 $\Rightarrow A = 9000 (1 + 1/10)^2 \times [1 + 1/30]$

 $\Rightarrow A = 9000 (11/10)^2 \times [31/30]$

 $\Rightarrow A = 9000 \times 121/100 \times 31/30$

 $\Rightarrow A = 9 \times 121 \times 31/3$

 $\Rightarrow A = 3 \times 121 \times 31$

 $\Rightarrow A = 11253$

∴ Amount = Rs.11253

 \therefore Compound interest = Rs.(11253 - 9000)

= Rs.2253

7. Question

Answer

Present value = Rs.8000

Interest rate for 1^{st} year, p = 9 % per annum

Interest rate for 2^{nd} year, q = 10 % per annum

Time = 2 years

Amount (A) = $P \times (1 + p/100) \times (1 + q/100)$

 $A = 8000 \times (1 + 9/100) \times (1 + 10/100)$

 $= 8000 \times (109/100) \times (1 + 1/10)$

 $= 8000 \times 109/100 \times 11/10$

 $= 8 \times 109 \times 11$

= 9592

8. Question

Answer

Present value = Rs.125000

Interest rate = 8% per annum

Time = 3 years

Amount (A) = $P(1 + R/100)^n$ [Where, P = Present value

R = Annual interest rate

n = Time in years]

 $\therefore A = 125000 (1 + 8/100)^3$

 $\Rightarrow A = 125000 (108/100)^3$

 \Rightarrow A = 125000 \times 108/100 \times 108/100 \times 108/100

 $\Rightarrow A = 125000 \times 1259712/1000000$

 $\Rightarrow A = 125 \times 1259712/1000$

 $\Rightarrow A = 1259712/8$

 $\Rightarrow A = 157464$

... Amount = Rs.157464

:. Anand has to pay Rs.157464 after 3 years to clear the debt.

9. Question

Answer

Present value = Rs.11000

Interest rate = 10% per annum

Time = 3 years

Amount (A) = $P(1 + R/100)^n$ [Where, P = Present value

R = Annual interest rate

n = Time in years]

 $\therefore A = 11000 (1 + 10/100)^3$

 $\Rightarrow A = 11000 (1 + 1/10)^3$

 $\Rightarrow A = 11000 (11/10)^3$

 \Rightarrow A = 11000 \times 11/10 \times 11/10 \times 11/10

 $\Rightarrow A = 11000 \times 1331/1000$

 $\Rightarrow A = 11 \times 1331$

 $\Rightarrow A = 14641$

.. Beeru has to pay Rs.14641 to clear the debt.

10. Question

Answer

Present value = Rs.18000

Interest rate for 1^{st} year, p = 12 % per annum

Interest rate for 2^{nd} year, q = (25/2) % per annum

Time = 2 years

Amount (A) = $P \times (1 + p/100) \times (1 + q/100)$

 $A = 18000 \times (1 + 12/100) \times [1 + (25/2)/100]$

 $= 18000 \times (112/100) \times [1 + 25/200]$

 $= 18000 \times (112/100) \times [1 + 1/8]$

 $= 18000 \times 112/100 \times 9/8$

 $= 180 \times 112 \times 9/8$

 $= 180 \times 14 \times 9$

= 22680

∴ Amount = Rs.22680

... Shubhlaxmi has to pay Rs.157464 after 2 years.

11. Question

Answer

Present value = Rs.24000

Interest rate = 10 % per annum

Time = 2 years 3 month = (2 + 1/4) years = $2\frac{1}{4}$ years.

Amount (A) = P $(1 + R/100)^n \times [1 + (1/4 \times R)/100]$

[Where, P = Present value

R = Annual interest rate

n = Time in years]

 $\therefore A = 24000 (1 + 10/100)^2 \times [1 + (1/4 \times 10)/100]$

 $\Rightarrow A = 24000 (1 + 1/10)^2 \times [1 + 1/40]$

 $\Rightarrow A = 24000 (11/10)^2 \times [41/40]$

 $\Rightarrow A = 24000 \times 121/100 \times 41/40$

 \Rightarrow A = 24 \times 121 \times 41/4

 $\Rightarrow A = 6 \times 121 \times 41$

 $\Rightarrow A = 29766$

CLASS24

∴ Amount = Rs.29766

... Neha should pay Rs. 29766 to the bank after 2 years 3 months.

12. Question

Answer

Present value = Rs.16000

Interest rate = $7\frac{1}{2}\%$ = (15/2)% per annum

Time = 2 years

Simple interest (SI) = PRT/100 [where, P = Present value

R = Interest rate, T = Time

 \therefore SI = $(16000 \times (15/2) \times 2)/100$

 \Rightarrow SI = 160 \times 15

 \Rightarrow SI = 2400

Now,

Amount (A) = $P(1 + R/100)^n$ [Where, P = Present value

R = Annual interest rate

n = Time in years

 $\therefore A = 16000 [1 + (15/2)/100]^2$

 $\Rightarrow A = 16000 [1 + 3/40]^2$

 $\Rightarrow A = 16000 [43/40]^2$

 $\Rightarrow A = 16000 \times 1849/1600$

 $\Rightarrow A = 10 \times 1849$

 $\Rightarrow A = 18490$

∴ Amount = Rs.18490

∴ Compound interest = Rs.(18490 - 16000)

= Rs.2490

Now,

(CI - SI) = 2490 - 2400

= Rs.90

... Abhay gains Rs.90 at the end of 2 years.

13. Question

Answer

Simple interest = Rs.2400

Interest rate = 8% per annum

CLASS24

Time = 2 years

Simple interest (SI) = PRT/100 [where, P = Present value

R = Interest rate

 $\therefore 2400 = (P \times 8 \times 2)/100 \text{ T} = \text{Time}$

 $\Rightarrow 2400 = P \times 16/100$

 \Rightarrow 2400 = P \times 4/25

 $\Rightarrow P = 2400 \times 25/4$

 $\Rightarrow P = 600 \times 25$

 $\Rightarrow P = 15000$

∴ Sum = Rs.15000

Now,

Amount (A) = $P(1 + R/100)^n$ [Where, P = Present value

R = Annual interest rate

n = Time in years]

 $\therefore A = 15000 [1 + 8/100]^2$

 $\Rightarrow A = 15000 [1 + 2/25]^2$

 $\Rightarrow A = 15000 [27/25]^2$

 $\Rightarrow A = 15000 \times 27/25 \times 27/25$

 $\Rightarrow A = 600 \times 27 \times 27/25$

 $\Rightarrow A = 24 \times 27 \times 27$

 $\Rightarrow A = 17496$

∴ Amount = Rs.17496

 \therefore Compound interest = Rs.(17496 - 15000)

= Rs.2496

14. Question

Find the sum.

Answer

Let sum = P

Interest rate = 6% per annum

Time = 2 years

Simple interest (SI) = PRT/100 [Where, P = Present value

R = Annual interest rate

T = Time in years]

CLASS24

Compound interest (CI) = $P(1 + R/100)^n - P$ [Where, P = Present value

R = Annual interest rate

n = Time in years]

$$\therefore CI = P (1 + 6/100)^2 - P$$

$$\Rightarrow$$
 CI = P (1 + 3/50)² - P

$$\Rightarrow CI = P (53/50)^2 - P$$

$$\Rightarrow$$
 CI = (2809P/2500)- P

$$\Rightarrow$$
 CI = (2809P - 2500P)/2500

$$\Rightarrow$$
 CI = 309P/2500____(ii)

Now,

$$CI - SI = (309P/2500) - (3P/25)$$

$$\Rightarrow$$
 90 = (309P/2500) - (3P/25) [Given, CI - SI = 90]

$$\Rightarrow 90 = (309P - 300P)/2500$$

$$\Rightarrow$$
 90 = 9P/2500

$$\Rightarrow P = 90 \times 2500/9$$

$$\Rightarrow P = 10 \times 2500$$

$$\Rightarrow P = 25000$$

15. Question

Answer

Let sum = P

Interest rate = 10% per annum

Time = 3 years

Simple interest (SI) = PRT/100 [Where, P = Present value

R = Annual interest rate

T = Time in years

$$\therefore SI = (P \times 10 \times 3)/100$$

$$\Rightarrow$$
 SI = 3P/10____(i)

Compound interest (CI) = $P(1 + R/100)^n - P$ [Where, P = Present value

R = Annual interest rate

n = Time in years

$$\therefore$$
 CI = P (1 + 10/100)³ - P

$$\Rightarrow$$
 CI = P (1 + 1/10)³ - P

$$\Rightarrow$$
 CI = (1331P/1000)- P

$$\Rightarrow$$
 CI = (1331P - 1000P)/1000

$$\Rightarrow$$
 CI = 331P/1000____(ii)

Now,

$$CI - SI = (331P/1000) - (3P/10)$$

$$\Rightarrow$$
 93 = (331P/1000) - (3P/10) [Given, CI - SI = 93]

$$\Rightarrow 93 = (331P - 300P)/1000$$

$$\Rightarrow 93 = 31P/1000$$

$$\Rightarrow P = 93 \times 1000/31$$

$$\Rightarrow P = 3 \times 1000$$

$$\Rightarrow P = 3000$$

16. Question

Answer

Let sum = P

Interest rate =
$$6\frac{2}{3}\%$$
 = (20/3) % per annum

Time = 2 years

Now,

Amount (A) = $P(1 + R/100)^n$ [Where, $P = Present \ value$

R = Annual interest rate

n = Time in years]

$$A = P[1 + (20/3)/100]^2$$

$$\Rightarrow 10240 = P[1 + 1/15]^2$$

$$\Rightarrow 10240 = P[16/15]^2$$

$$\Rightarrow 10240 = P \times 256/225$$

$$\Rightarrow P = 10240 \times 225/256$$

$$\Rightarrow P = 40 \times 225$$

$$\Rightarrow P = 9000$$

17. Question

Answer

Let sum = P

Interest rate = 10% per annum

Now,

CLASS24

Amount (A) = $P(1 + R/100)^n$ [Where, $P = Present \ value$

R = Annual interest rate

n = Time in years]

$$\therefore A = P (1 + 10/100)^3$$

$$\Rightarrow$$
 21296 = P (1 + 1/10)³

$$\Rightarrow 21296 = P(11/10)^3$$

$$\Rightarrow$$
 21296 = P × 1331/1000

$$\Rightarrow P = 21296 \times 1000/1331$$

$$\Rightarrow P = 16 \times 1000$$

$$\Rightarrow P = 16000$$

18. Question

Answer

Let rate = R % per annum

$$P = Rs.4000$$

$$A = Rs.4410$$

Time = 2 years

Now,

Amount (A) = $P(1 + R/100)^n$ [Where, A = Amount with compound interest

P = Present value

R = Annual interest rate

n = Time in years]

$$A = P(1 + R/100)^2$$

$$\Rightarrow$$
 4410 = 4000 (1 + R/100)²

$$\Rightarrow$$
 (1 + R/100)² = 4410/4000

$$\Rightarrow$$
 (1 + R/100)² = 441/400

$$\Rightarrow$$
 (1 + R/100) = $\sqrt{(441/400)}$

$$\Rightarrow R/100 = (21/20) - 1$$

$$\Rightarrow R/100 = (21 - 20)/20$$

$$\Rightarrow R/100 = 1/20$$

$$\Rightarrow R = 100/20$$

$$\Rightarrow R = 5$$

19. Question

Let rate = R % per annum

P = Rs.640

A = Rs.774.40

Time = 2 years

Now,

Amount (A) = $P(1 + R/100)^n$ [Where, A = Amount with compound interest

P = Present value

R = Annual interest rate

n = Time in years]

$$\therefore A = P(1 + R/100)^2$$

$$\Rightarrow$$
 774.40 = 640 (1 + R/100)²

$$\Rightarrow$$
 (1 + R/100)² = 774.40/640

$$\Rightarrow$$
 (1 + R/100)² = 1.21

$$\Rightarrow$$
 (1 + R/100) = $\sqrt{(1.21)}$

$$\Rightarrow R/100 = (1.1) - 1$$

$$\Rightarrow R/100 = 0.1$$

$$\Rightarrow R = 0.1 \times 100$$

$$\Rightarrow R = 10$$

∴ Rate = 10% per annuam.

20. Question

Answer

Let time = n years

P = Rs.1800

A = Rs.2178

R = 10% per annum

Now,

Amount (A) = $P(1 + R/100)^n$ [Where, A = Amount with compound interest

P = Present value

R = Annual interest rate

n = Time in years]

$$\therefore A = P (1 + R/100)^n$$

$$\Rightarrow$$
 2178 = 1800 (1 + 10/100)ⁿ

$$\Rightarrow (1 + 1/10)^n = 2178/1800$$

CLASS24

 \Rightarrow n = 2

 \therefore Time = 2 years.

21. Question

Answer

Let time = n years

P = Rs.6250

A = Rs.7290

R = 8% per annum

Now,

Amount (A) = $P(1 + R/100)^n$ [Where, A = Amount with compound interest

P = Present value

R = Annual interest rate

n = Time in years]

 $\therefore A = P (1 + R/100)^n$

 \Rightarrow 7290 = 6250 (1 + 8/100)ⁿ

 \Rightarrow $(1 + 2/25)^n = 7290/6250$

 $\Rightarrow (27/25)^n = 729/625$

 \Rightarrow (27/25)ⁿ = (27/25)²

 \Rightarrow n = 2

 \therefore Time = 2 years.

22. Question

Answer

Population of a town, P = 125000

Time, n = 3 years

Increasing rate, R = 2% per annum

Now,

Amount (A) = $P(1 + R/100)^n$ [Where, A = Amount with compound interest

P = Present value

R = Annual interest rate

n = Time in years]

 \therefore Population = P (1 + R/100)ⁿ

 $= 125000 (1 + 2/100)^3$

 $= 125000 (1 + 1/50)^3$

 $= 125000 (51/50)^3$

 $= 125000 \times 51/50 \times 51/50 \times 51/50$

 $= 1 \times 51 \times 51 \times 51$

= 132651

... Population of a town after 3 years is 132651.

23. Question

Answer

Population of a town, P = 50000

Interest rate for 1^{st} year, p = 5%

Interest rate for 2^{nd} year, q = 4%

Interest rate for 3^{rd} year, r = 3%

Time, n = 3 years

Now,

Present population = $P \times (1 + p/100) \times (1 + q/100) \times (1 + r/100)$

CLASS24

 $= 50000 \times (1 + 5/100) \times (1 + 4/100) \times (1 + 3/100)$

 $= 50000 \times (1 + 1/20) \times (1 + 1/25) \times (1 + 3/100)$

 $= 50000 \times 21/20 \times 26/25 \times 103/100$

 $= 50 \times 21/2 \times 26/25 \times 103$

 $= 1 \times 21 \times 26 \times 103$

= 56238

... Present population of a town is 56238.

24. Question

Answer

Population of a city in 2013, P = 120000

Time, n = 3 years

Increasing rate, R = 6% per annum

Now,

Amount (A) = $P(1 + R/100)^n$ [Where, A = Amount with compound interest

P = Present value

R = Annual interest rate

n = Time in years]

... Population of the city in the year 2014,

 \therefore Population = P (1 + R/100)ⁿ

 $= 120000 (1 + 6/100)^{1}$

= 120000 (1 + 3/50)

= 120000 (53/50)

 $= 120000 \times 53/50$

 $= 2400 \times 53$

= 127200

... Population of a city in 2014 is 127200.

Now,

Decreasing rate = 8%

... Population of the city in the year 2015,

 \therefore Population = P (1 - R/100)ⁿ

 $= 127200 (1 - 5/100)^{1}$

= 127200 (1 - 1/20)

= 127200 (19/20)

 $= 127200 \times 19/20$

 $= 6360 \times 19$

= 120840

... Population of a city in 2015 is 120840.

25. Question

Answer

Count of bacteria, P = 500000

Time, n = 2 hours

Increasing rate, R = 2% per hour

Now,

Amount (A) = $P(1 + R/100)^n$ [Where, A = Amount with compound interest

CLASS24

P = Present value

R = Annual interest rate

n = Time

 \therefore Count of bacteria = P (1 + R/100)ⁿ

 $= 500000 (1 + 2/100)^2$

 $= 500000 (102/100)^2$

 $= 500000 \times 102/100 \times 102/100$

 $= 50 \times 102 \times 102$

= 520200

.. Count of bacteria at the end of 2 hours is 520200.

Answer

Initial count of bacteria, P = 20000

Time, n = 3 hours

Increasing rate, R = 10% per hour

Now,

Amount (A) = $P(1 + R/100)^n$ [Where, A = Amount with compound interest

P = Present value

R = Annual interest rate

n = Time

.: Count of bacteria at the end of 1st hour,

 \therefore Count of bacteria = P (1 + R/100)ⁿ

 $= 20000 (1 + 10/100)^{1}$

= 20000 (1 + 1/10)

= 20000 (11/10)

 $= 20000 \times 11/10$

= 2000 × 11

= 22000

... Count of bacteria at the end of 1st hour is 22000.

Now,

Decreasing rate = 10%

.: Count of bacteria at the end of 2nd hour,

 \therefore Count of bacteria = P $(1 + R/100)^n$

 $= 22000 (1 - 10/100)^{1}$

= 22000 (1 - 1/10)

 $= 22000 \times 9/10$

 $= 2200 \times 9$

= 19800

... Count of bacteria at the end of 2nd hours is 19800.

Now,

Increasing rate = 10%

.: Count of bacteria at the end of 3rd hour,

 \therefore Count of bacteria = P (1 + R/100)ⁿ

 $= 19800 (1 + 10/100)^{1}$

= 19800 (1 + 1/10)

= 19800 (11/10)

 $= 19800 \times 11/10$

 $= 1980 \times 11$

= 21780

 \therefore Count of bacteria at the end of 3rd hours is 21780.

27. Question

Answer

Present value of machine, P = Rs.625000

Time, n = 2 years

Rate of depreciates, R = 8% per annum

Now,

Amount (A) = $P(1 + R/100)^n$ [Where, A = Amount with compound interest

CLASS24

P = Present value

R = Annual interest rate

n = Time in years]

 \therefore Value = P (1 - R/100)ⁿ [\because Rate decreases]

 $= 625000 (1 - 8/100)^{2}$

 $= 625000 (1 - 2/25)^2$

 $= 625000 (23/25)^2$

 $= 625000 \times 729/625$

 $= 1000 \times 529$

= 529000

... Value of machine after 2 years will be Rs.529000.

28. Question

Answer

Present value of scooter, P = Rs.56000

Time, n = 3 years

Rate of depreciates, R = 10% per annum

Now,

Amount (A) = $P(1 + R/100)^n$ [Where, A = Amount with compound interest

P = Present value

R = Annual interest rate

n = Time in years]

 \therefore Value = P (1 - R/100)ⁿ [\because Rate decreases]

 $= 56000 (1 - 10/100)^3$

 $= 56000 (1 - 1/10)^3$

 $= 56000 (9/10)^3$

 $= 56000 \times 729/1000$

 $= 56 \times 729$

=40824

... Value of scooter after 3 years will be Rs.40824.

CLASS24

29. Question

Answer

Present value of car, P = Rs.348000

Rate of depreciates for 1^{st} year, p = 10%

Rate of depreciates for 2^{nd} year, q = 20%

Time, n = 2 years

Now,

Value = $P \times (1 - p/100) \times (1 - q/100)$

 $= 348000 \times (1 - 10/100) \times (1 - 20/100)$

 $= 348000 \times (1 - 1/10) \times (1 - 1/5)$

 $= 348000 \times 9/10 \times 4/5$

 $= 34800 \times 9 \times 4/5$

 $=6960\times9\times4$

= 25056

:. Value of the car after 2 years is Rs.25056.

30. Question

Answer

Let the 3 years ago machine value = P

Rate of depreciates, R = 10%

Time, n = 3 years

Now,

Value = $P(1 + R/100)^n$ [Where,

P = Present value

R = Annual interest rate

n = Time in years]

 \therefore Value = P $(1 - 10/100)^n$ [\because Rate decreases]

 \Rightarrow 291600 = P (1 - 1/10)³

 \Rightarrow 291600 = P (9/10)³

 \Rightarrow 291600 = P × 729/1000

 $\Rightarrow P = 291600 \times 1000/729$

 $\Rightarrow P = 400 \times 1000$

 $\Rightarrow P = 400000$

... Initial value of machine is Rs.400000.

Exercise 11C

CLASS24

1. Question

Answer

Present value, P = Rs.8000

Interest rate, R = 10% per annum

Time, n = 1 years

: Compounded half-yearly.

 \therefore Amount (A) = P [1 + (R/2)/100]²ⁿ [Where, P = Present value

R = Annual interest rate

n = Time in years

 $\therefore A = 8000 [1 + (10/2)/100]^2$

 $\Rightarrow A = 8000 [1 + 5/100]^2$

 $\Rightarrow A = 8000 [1 + 1/20]^2$

 $\Rightarrow A = 8000 [21/20]^2$

 $\Rightarrow A = 8000 \times 441/400$

 $\Rightarrow A = 20 \times 441$

 $\Rightarrow A = 8820$

∴ Amount = Rs.8820

 \therefore Compound interest = Rs.(8820 - 8000) [\because CI = A - P]

= Rs.820

2. Question

Answer

Present value, P = Rs.31250

Interest rate, R = 8% per annum

Time, n = (3/2) years

: Compounded half-yearly.

 \therefore Amount (A) = P [1 + (R/2)/100]²ⁿ [Where, P = Present value

R = Annual interest rate

n = Time in years]

CLASS24

 $\therefore A = 31250 [1 + (8/2)/100]^3 [2n = 2 \times 3/2]$

 $\Rightarrow A = 31250 [1 + 4/100]^3$

 $\Rightarrow A = 31250 [1 + 1/25]^3$

 $\Rightarrow A = 31250 [26/25]^3$

 \Rightarrow A = 31250 \times 17576/15625

 $\Rightarrow A = 2 \times 17576$

 $\Rightarrow A = 35152$

∴ Amount = Rs.35152

∴ Compound interest = Rs.(35152 - 31250) [∵Cl = A - P]

= Rs.3902

3. Question

Answer

Present value, P = Rs.12800

Interest rate, R = (15/2)% per annum

Time, n = 1 years

: Compounded half-yearly.

 \therefore Amount (A) = P[1 + (R/2)/100]² [Where, P = Present value

R = Annual interest rate

n = Time in years]

 $\therefore A = 12800 [1 + (15/4)/100]^2$

 $\Rightarrow A = 12800 [1 + 3/80]^2$

 $\Rightarrow A = 12800 [83/80]^2$

 $\Rightarrow A = 12800 \times 6889/6400$

 \Rightarrow A = 128 \times 6889/64

 $\Rightarrow A = 2 \times 6889$

 $\Rightarrow A = 13778$

∴ Amount = Rs.13778

 \therefore Compound interest = Rs.(13778 - 12800) [\because CI = A - P]

= Rs.978

4. Question

Answer

Present value, P = Rs.160000

Interest rate, R = 10% per annum

CLASS24

Time, n = 2 years

: Compounded half-yearly.

 \therefore Amount (A) = P [1 + (R/2)/100]² [Where, P = Present value

R = Annual interest rate

n = Time in years]

 $\therefore A = 160000 [1 + (10/2)/100]^4$

 $\Rightarrow A = 160000 [1 + 5/100]^4$

 $\Rightarrow A = 160000 [1 + 1/20]^4$

 $\Rightarrow A = 160000 [21/20]4$

 \Rightarrow A = 160000 \times 21/20 \times 21/20 \times 21/20 \times 21/20

 $\Rightarrow A = 160000 \times 194481/160000$

 $\Rightarrow A = 1 \times 194481$

 $\Rightarrow A = 194481$

∴ Amount = Rs.8820

∴ Compound interest = Rs.(194481 - 160000) [∴CI = A - P]

= Rs.34481

5. Question

Answer

Present value, P = Rs.40960

Interest rate, R = (25/2)% per annum

Time, n = 3/2 years

: Compounded half-yearly.

 \therefore Amount (A) = P[1 + (R/2)/100]² [Where, P = Present value

R = Annual interest rate

n = Time in years]

 \therefore A = 40960 [1 + (25/4)/100]³ [R = 25/2 and n = 3/2 years]

 $\Rightarrow A = 40960 [1 + 1/16]^3$

 $\Rightarrow A = 40960 [17/16]^3$

 $\Rightarrow A = 40960 \times 4913/4096$

 $\Rightarrow A = 10 \times 4913$

 $\Rightarrow A = 49130$

∴ Amount = Rs.49130

 \therefore Compound interest = Rs.(49130 - 40960) [\because Cl = A - P]

CLASS24

= Rs.8170

6. Question

Answer

Initial value, P = Rs.125000

Interest rate, R = 12% per annum

Time, n = (1 + 1/2) years = 3/2 years

: Compounded half-yearly.

 \therefore Amount (A) = P[1 + (R/2)/100]²ⁿ [Where, P = Present value

R = Annual interest rate

n = Time in years

 $\therefore A = 125000 [1 + (12/2)/100]^3 [n = 3/2 \text{ years}]$

 $\Rightarrow A = 125000 [1 + 6/100]^3$

 $\Rightarrow A = 125000 [1 + 3/50]^3$

 $\Rightarrow A = 125000 [53/50]^3$

 \Rightarrow A = 125000 \times 53/50 \times 53/50 \times 53/50

 $\Rightarrow A = 125000 \times 148877/125000$

 $\Rightarrow A = 1 \times 148877$

 $\Rightarrow A = 148877$

∴ Amount = Rs.148877

:. Compound interest = Rs.(148877 - 125000) [::CI = A - P]

= Rs.23877

∴ Rs.23877 interest paid by Aslam after (3/2) years.

7. Question

Answer

Present value, P = Rs.20000

Interest rate, R = 6% per annum

Time, n = 1 years

: Compounded half-yearly.

 \therefore Amount (A) = P [1 + (R/2)/100]² [Where, P = Present value

R = Annual interest rate

n = Time in years

 $\therefore A = 20000 [1 + (6/2)/100]^2$

 $\Rightarrow A = 20000 [1 + 3/100]^2$

 $\Rightarrow A = 20000 [103/100]^2$

 $\Rightarrow A = 20000 \times 103/100 \times 103/100$

 \Rightarrow A = 2 \times 103 \times 103

 $\Rightarrow A = 21218$

∴ Amount = Rs.21218

∴ Shella gets Rs.21218 after 1 year.

8. Question

Answer

Initial value, P = Rs.65536

Interest rate, R = (25/2)% per annum

Time, n = 2 years

: Compounded annually.

∴ Amount (A) = $P[1 + R/100]^n$ [Where, P = Present value

CLASS24

R = Annual interest rate

n = Time in years]

 $\therefore A = 65536 [1 + (25/2) / 100]^2$

 $\Rightarrow A = 65536 [1 + 1/8]^2$

 $\Rightarrow A = 65536 [9/8]^2$

 \Rightarrow A = 65536 \times 9/8 \times 9/8

 $\Rightarrow A = 65536 \times 81/64$

 $\Rightarrow A = 1024 \times 81$

 $\Rightarrow A = 82944$

∴ Amount = Rs.82944

 \therefore Compound interest = Rs.(82944 - 65536) [\because Cl = A - P]

= Rs.17408

Now,

: Compounded half-yearly.

.. Amount (A) = $P[1 + (R/2)/100]^{2^n}$ [Where, $P = Present \ value$

R = Annual interest rate

n = Time in years]

 \therefore A = 65536 [1 + (25/4)/100]⁴ [R = (25/2)% and n = 2 years]

 $\Rightarrow A = 65536 [1 + 1/16]^4$

 $\Rightarrow A = 65536 [17/16]^4$

 \Rightarrow A = 65536 \times 17/16 \times 17/16 \times 17/16 \times 17/16

 \Rightarrow A = 65536 \times 83521/65536

 $\Rightarrow A = 1 \times 83521$

 $\Rightarrow A = 83521$

∴ Amount = Rs.83521

 \therefore Compound interest = Rs.(83521 - 65536) [\because CI = A - P]

= Rs.17985

Now,

Difference between interests compound half-yearly and yearly,

CLASS24

= Rs.(17985 - 17408)

= Rs.577

9. Question

Answer

Present value, P = Rs.32000

Interest rate, R = 5% per annum

Time, n = 6 months = (1/2) years

: Compounded quarterly,

 \therefore Amount (A) = P[1 + (R/4)/100]⁴ⁿ [Where, P = Present value

R = Annual interest rate

n = Time in years]

 $\therefore A = 362000 [1 + (5/4)/100]^2 [4n = 4 \times 1/2]$

 $\Rightarrow A = 32000 [1 + 1/80]^2$

 $\Rightarrow A = 32000 [81/80]^2$

 $\Rightarrow A = 32000 \times 81/80 \times 81/80$

 $\Rightarrow A = 400 \times 81 \times 81/80$

 $\Rightarrow A = 5 \times 81 \times 81$

 $\Rightarrow A = 32805$

∴ Amount = Rs.32805

... Sudershan will receive amount of Rs.32805 after 6 months.

10. Question

Answer

Present value, P = Rs.390625

Interest rate, R = 16% per annum

Time, n = 1 year

: Compounded quarterly,

CLASS24

 \therefore Amount (A) = P [1 + (R/4)/100]⁴ⁿ [Where, P = Present value

R = Annual interest rate

n = Time in years

 $\therefore A = 390625 [1 + (16/4)/100]^4$

 $\Rightarrow A = 390625 [1 + 4/100]^4$

 $\Rightarrow A = 390625 [1 + 1/25]^4$

 $\Rightarrow A = 390625 [26/25]^4$

 \Rightarrow A = 390625 \times 26/25 \times 26/25 \times 26/25 \times 26/25

 \Rightarrow A = 390625 \times 456976/390625

 $\Rightarrow A = 1 \times 456976$

 $\Rightarrow A = 456976$

:. Amount = Rs.456976

.. Arun has to pay Rs.45976 after 1 year.

CCE Test Paper-11

1. Question

Answer

Present value = Rs.3000

Interest rate = 10% per annum

Time = 2 years

Amount (A) = $P(1 + R/100)^n$ [Where, P = Present value

R = Annual interest rate

n = Time in years]

 $\therefore A = 3000 (1 + 10/100)^2$

 $\Rightarrow A = 3000 (1 + 1/10)^2$

 $\Rightarrow A = 3000 (11/10)^2$

 $\Rightarrow A = 3000 \times 11/10 \times 11/10$

 $\Rightarrow A = 3000 \times 121/100$

 $\Rightarrow A = 30 \times 121$

⇒ A = 3630

∴ Amount = Rs.3630

:. Compound interest = Rs.(3630 - 3000)

= Rs.630

2. Question

Present value = Rs.10000

Interest rate for 1^{st} year, p = 10 % per annum

Interest rate for 2^{nd} year, q = 12 % per annum

Time = 2 years

Amount (A) = $P \times (1 + p/100) \times (1 + q/100)$

$$A = 10000 \times (1 + 10/100) \times (1 + 12/100)$$

$$= 10000 \times (1 + 1/10) \times (112/100)$$

$$= 10000 \times 11/10 \times 112/100$$

$$= 10 \times 11 \times 112$$

- = 12320
- ∴ Amount = Rs.12320
- :. Compound interest = Rs.(12320 10000)
- = Rs.2320

3. Question

Answer

Present value = Rs.6000

Interest rate = 10 % per annum

Time = 1 years

: Interest is compounded half-yearly.

:. Amount (A) = $P[1 + (R/2)/100]^{2n}$ [Where, $P = Present \ value$

R = Annual interest rate

n = Time in years]

$$\therefore A = 6000 [1 + (10/2)/100]^2$$

$$\Rightarrow A = 6000 [1 + 5/100]^2$$

$$\Rightarrow A = 6000 [1 + 1/20]^2$$

$$\Rightarrow A = 6000 [21/20]^2$$

$$\Rightarrow A = 6000 \times 21/20 \times 21/20$$

$$\Rightarrow$$
 A = 300 \times 21 \times 21/20

$$\Rightarrow A = 15 \times 21 \times 21$$

$$\Rightarrow A = 6615$$

$$\therefore$$
 Compound interest = Rs.(6615 - 6000)

$$= Rs.615$$

Let sum = P

Amount (A) = Rs.23762

Interest rate = 9 % per annum

Time = 2 years

Now,

Amount (A) = $P(1 + R/100)^n$ [Where, $P = Present \ value$

R = Annual interest rate

n = Time in years

$$\therefore A = P(1 + 9/100)^2$$

$$\Rightarrow 23762 = P(109/100)^2$$

$$\Rightarrow 23762 = P \times 11881/10000$$

$$\Rightarrow P = 23762 \times 10000/11881$$

$$\Rightarrow P = 2 \times 10000$$

$$\Rightarrow P = 20000$$

5. Question

Answer

Present value, P = Rs.32000

Time, n = 2 years

Rate of depreciates, R = 10% per annum

Now,

Amount (A) = $P(1 + R/100)^n$ [Where, A = Amount with compound interest

P = Present value

R = Annual interest rate

n = Time in years]

 \therefore Value = P (1 - R/100)ⁿ [\because Rate decreases]

 $= 32000 (1 - 10/100)^2$

 $= 32000 (1 - 1/10)^2$

 $= 32000 (9/10)^2$

 $= 32000 \times 9/10 \times 9/10$

 $= 320 \times 9 \times 9$

= 25920

... Value of scooter will be Rs.25920 after 2 years.

CLASS24

6. Question

Answer

Present value = Rs.5000

Interest rate = 10% per annum

Time = 2 years

Amount (A) = $P(1 + R/100)^n$ [Where, $P = Present \ value$

R = Annual interest rate

n = Time in years]

 $\therefore A = 5000 (1 + 10/100)^2$

 $\Rightarrow A = 5000 (1 + 1/10)^2$

 $\Rightarrow A = 5000 (11/10)^2$

 $\Rightarrow A = 5000 \times 11/10 \times 11/10$

 $\Rightarrow A = 5000 \times 121/100$

 $\Rightarrow A = 50 \times 121$

 $\Rightarrow A = 6050$

∴ Amount = Rs.6050

 \therefore Compound interest = Rs.(6050 - 5000)

= Rs.1050

7. Question

Answer

Population of a town, P = 4000

Time, n = 2 years

Increasing rate, R = 5% per annum

Now,

Amount (A) = $P(1 + R/100)^n$ [Where, A = Amount with compound interest

R = Annual interest rate

n = Time in years]

 \therefore Population = P (1 + R/100)ⁿ

 $= 4000 (1 + 5/100)^2$

 $= 4000 (1 + 1/20)^2$

 $= 4000 (21/20)^2$

 $=4000 \times 21/20 \times 21/20$

 $= 200 \times 21 \times 21/20$

 $= 10 \times 21 \times 21$

= 4410

... Population of a town after 2 years is 4410.

8. Question

Answer

Present value, P = Rs.5000

Amount, A = Rs.5832

Time, n = 2 years

Now,

Amount (A) = $P(1 + R/100)^n$ [Where, A = Amount with compound interest

P = Present value

R = Annual interest rate

n = Time in years]

:. Amount (A) = P $(1 + R/100)^n$

 \Rightarrow 5832 = 5000 (1 + R/100)²

 \Rightarrow (1 + R/100)² = 5832/5000

 \Rightarrow (1 + R/100)² = 2916/2500

 $\Rightarrow (1 + R/100)^2 = (54/50)^2$

 $\Rightarrow 1 + R/100 = 54/50$

 $\Rightarrow R/100 = (54/50) - 1$

 $\Rightarrow R/100 = (54 - 50)/50$

 $\Rightarrow R/100 = 4/50$

 $\Rightarrow R = 400/50$

 $\Rightarrow R = 8$

∴ Rate = 8 %.

9. Question

Answer

Simple interest = Rs.1500

Interest rate = 10% per annum

Time = 3 years

Simple interest (SI) = PRT/100 [where, P = Present value

CLASS24

R = Interest rate

 $\therefore 1500 = (P \times 10 \times 3)/100 \text{ T} = \text{Time}$

 $\Rightarrow 1500 = P \times 30/100$

 $\Rightarrow 1500 = P \times 3/10$

 $\Rightarrow P = 1500 \times 10/3$

 $\Rightarrow P = 500 \times 10$

 $\Rightarrow P = 5000$

∴ Sum = Rs.5000

Now,

Amount (A) = $P(1 + R/100)^n$ [Where, P = Present value

R = Annual interest rate

n = Time in years]

 $\therefore A = 5000 [1 + 10/100]^3$

 $\Rightarrow A = 5000 [1 + 1/10]^3$

 $\Rightarrow A = 5000 [11/10]^3$

 $\Rightarrow A = 5000 \times 11/10 \times 11/10 \times 11/10$

 $\Rightarrow A = 5000 \times 1331/1000$

 $\Rightarrow A = 5 \times 1331$

 $\Rightarrow A = 6655$

∴ Amount = Rs.6655

 \therefore Compound interest = Rs.(6655 - 5000)

= Rs.1655

10. Question

Answer

CLASS24

Compound interest, CI = Rs.1050

Interest rate, R = 10% per annum

Time = 2 years

$$\therefore CI = P(1 + R/100)^n - P$$

$$\Rightarrow 1050 = P(1 + 10/100)^2 - P$$

$$\Rightarrow 1050 = P(1 + 1/10)^2 - P$$

$$\Rightarrow 1050 = P(11/10)^2 - P$$

$$\Rightarrow 1050 = 121P/100 - P$$

$$\Rightarrow 1050 = (121P - 100P)/100$$

$$\Rightarrow 1050 = 21P/100$$

$$\Rightarrow P = 1050 \times 100/21$$

$$\Rightarrow P = 50 \times 100$$

$$\Rightarrow P = 5000$$

11. Question

Answer

(i) R

Amount (A) = $P(1 + R/100)^n$ [Where, A = Amount with compound interest

P = Present value

R = Annual interest rate

n = Time in years]

(ii) Compound interest

Amount (A) = $P(1 + R/100)^n$

And Compound interest = $P(1 + R/100)^n - P$

(iii) Rs.
$$P(1-\frac{R}{100})^2$$

: Rate decreases.

:. Value =
$$P(1 - R/100)^n$$

Present value of machine = Rs.P

Interest rate = R% per annum

Time, n = 2

$$\therefore Value = Rs. P \left(1 - \frac{R}{100}\right)^2$$

(iv)
$$P\left(1+\frac{R}{100}\right)^{5}$$

CLASS24

Present population of a town = P

Increases rate = R% per annum

Time, n = 5 years

∴ Population = $P(1 + R/100)^n$ [Where,

P = Present value

R = Annual interest rate

n = Time in years]

 $\therefore \text{ Population after 5 years} = P \left(1 + \frac{R}{100} \right)^5$

Exercise 11D

1. Question

Answer

Present value, P = Rs.5000

Interest rate, R = 8% per annum

Time, n = 2 years

∴ Amount (A) = $P(1 + R/100)^n$ [Where, P = Present value

R = Annual interest rate

n = Time in years

$$\therefore A = 5000 (1 + 8/100)^2$$

$$\Rightarrow A = 5000 (1 + 2/25)^2$$

$$\Rightarrow A = 5000 (27/25)^2$$

 $\Rightarrow A = 5000 \times 27/25 \times 27/25$

 \Rightarrow A = 200 \times 27 \times 27/25

 $\Rightarrow A = 8 \times 27 \times 27$

 $\Rightarrow A = 5832$

∴ Amount = Rs.5832

 \therefore Compound interest = Rs.(5832 - 5000) [\because CI = A - P]

= Rs.832

2. Question

Answer

Present value, P = Rs.10000

Interest rate, R = 8% per annum

Time, n = 3 years

∴ Amount (A) = $P(1 + R/100)^n$ [Where, P = Present value

R = Annual interest rate

n = Time in years]

 $\therefore A = 10000 (1 + 10/100)^3$

 $\Rightarrow A = 10000 (1 + 1/10)^3$

 $\Rightarrow A = 10000 (11/10)^3$

 \Rightarrow A = 10000 \times 11/10 \times 11/10 \times 11/10

 \Rightarrow A = 10 \times 11 \times 11 \times 11

 $\Rightarrow A = 13310$

∴ Amount = Rs.13310

 \therefore Compound interest = Rs.(13310 - 10000) [\because CI = A - P]

= Rs.3310

3. Question

Answer

CLASS24

CLASS24

Interest rate, R = 12% per annum

Time, $n = 1\frac{1}{2}$ years

:. Amount (A) = P $(1 + R/100)^n \times [1 + (R/2)/100]$ [Where, P = Present value

R = Annual interest rate

n = Time in years]

 $\therefore A = 10000 (1 + 12/100)^{1} \times [1 + (12/2)/100]$

$$\Rightarrow$$
 A = 10000 (1 + 12/100) \times [1 + 6/100]

 \Rightarrow A = 10000 (112/100) \times [106/100]

 \Rightarrow A = 10000 \times 112/100 \times 106/100

 $\Rightarrow A = 1 \times 112 \times 106$

 $\Rightarrow A = 11872$

∴ Amount = Rs.11872

∴ Compound interest = Rs.(11872 - 10000) [∵CI = A - P]

= Rs.1872

4. Question

Answer

Present value, P = Rs.4000

Interest rate, R = 10% per annum

Time, n = 2 years 3 months = (2 + 1/4) years

:. Amount (A) = $P(1 + R/100)^n \times [1 + (R/4)/100]$ [Where, P = Present value

R = Annual interest rate

n = Time in years]

 $\therefore A = 4000 (1 + 10/100)^2 \times [1 + (10/4)/100]$

 $\Rightarrow A = 4000 (1 + 1/10)^2 \times [1 + 1/40]$

 $\Rightarrow A = 4000 (11/10)^2 \times [41/40]$

 $\Rightarrow A = 4000 \times 121/100 \times 41/40$

 $\Rightarrow A = 40 \times 121 \times 41/40$

 $\Rightarrow A = 121 \times 41$

 $\Rightarrow A = 4961$

∴ Amount = Rs.4961

 \therefore Compound interest = Rs.(4961 - 4000) [\because CI = A - P]

= Rs.961

CLASS24

5. Question

Answer

Sum, P = 25000

Interest rate for 1^{st} year, p = 5%

Interest rate for 2^{nd} year, q = 6%

Interest rate for 3^{rd} year, r = 8%

Time, n = 3 years

Now,

Amount (A) = $P \times (1 + p/100) \times (1 + q/100) \times (1 + r/100)$

 $= 25000 \times (1 + 5/100) \times (1 + 6/100) \times (1 + 8/100)$

 $= 25000 \times (1 + 1/20) \times (1 + 3/50) \times (1 + 2/25)$

 $= 25000 \times 21/20 \times 53/50 \times 27/25$

 $= 250 \times 21/2 \times 53/5 \times 27/25$

 $= 10 \times 21/2 \times 53/5 \times 27$

 $= 1 \times 21 \times 53 \times 27$

= 30051

 \therefore Compound interest = Rs.(30051 - 25000) [\because CI = A - P]

= Rs.50051

6. Question

Answer

Initial value, P = Rs.6250

Interest rate, R = 8% per annum

Time, n = 1 years

: Compounded half-yearly.

 \therefore Amount (A) = P [1 + (R/2)/100]²ⁿ [Where, P = Present value

CLASS24

R = Annual interest rate

n = Time in years]

 $\therefore A = 6250 [1 + (8/2)/100]^2$

 $\Rightarrow A = 6250 [1 + 4/100]^2$

 $\Rightarrow A = 6250 [1 + 1/25]^2$

 $\Rightarrow A = 6250 [26/25]^2$

 $\Rightarrow A = 6250 \times 26/25 \times 26/25$

 $\Rightarrow A = 6250 \times 26/25 \times 26/25$

 \Rightarrow A = 250 \times 26 \times 26/25

 $\Rightarrow A = 10 \times 26 \times 26$

 $\Rightarrow A = 6760$

∴ Amount = Rs.6760

 \therefore Compound interest = Rs.(6760 - 6250) [\because CI = A - P]

= Rs.510

7. Question

Answer

Present value, P = Rs.40000

Interest rate, R = 6% per annum

Time, n = 6 months = 1/2 years

: Compounded quarterly.

 \therefore Amount (A) = P[1 + (R/4)/100]⁴ⁿ [Where, P = Present value

R = Annual interest rate

n = Time in years]

 $\therefore A = 40000 [1 + (6/4)/100]^2 [4n = 4 \times 1/2]$

 $\Rightarrow A = 40000 [1 + 3/200]^2$

 $\Rightarrow A = 40000 [1 + 3/200]^2$

 $\Rightarrow A = 40000 [203/200]^2$

 $\Rightarrow A = 40000 \times 203/200 \times 203/200$

 $\Rightarrow A = 40000 \times 203/200 \times 203/200$

 \Rightarrow A = 200 \times 203 \times 203/200

 \Rightarrow A = 1 \times 203 \times 203

 $\Rightarrow A = 41209$

CLASS24

- ∴ Amount = Rs.41209
- \therefore Compound interest = Rs.(41209 40000) [\because CI = A P]
- = Rs.1209
- 8. Question

Answer

Population of a town, P = 24000

Time, n = 2 years

Increasing rate, R = 5% per annum

Amount (A) = $P(1 + R/100)^n$ [Where, A = Amount with compound interest

P = Present value

R = Annual interest rate

n = Time in years]

 \therefore Population = P (1 + R/100)ⁿ

 $= 24000 (1 + 5/100)^2$

 $= 24000 (1 + 1/20)^2$

 $= 24000 (21/20)^2$

 $= 24000 \times 21/20 \times 21/20$

 $= 240 \times 21/2 \times 21/2$

 $=60\times21\times21$

= 26460

... Population of a town is 26460 after 2 years.

9. Question

Answer

Value of a machine 3 years ago, P = Rs.60000

Time, n = 3 years

Rate of depreciates, R = 10% per annum

CLASS24

Now,

Amount (A) = $P(1 + R/100)^n$ [Where, A = Amount with compound interest

P = Present value

R = Annual interest rate

n = Time in years]

 \therefore Value = P (1 - R/100)ⁿ [\because Rate decreases]

 $= 60000 (1 - 10/100)^3$

 $= 60000 (1 - 1/10)^3$

 $= 60000 (9/10)^3$

 $= 60000 \times 9/10 \times 9/10 \times 9/10$

 $=60 \times 9 \times 9 \times 9$

= 43740

... Present value of the machine is Rs.43740.

10. Question

Answer

Let value of a machine 2 years ago, = P

Present value of machine = Rs.40000

Time, n = 2 years

Rate of depreciates, R = 20% per annum

Now,

Amount (A) = $P(1 + R/100)^n$ [Where, A = Amount with compound interest

P = Present value

R = Annual interest rate

n = Time in years]

 \therefore Value = P (1 - R/100)ⁿ [\therefore Rate decreases]

 $\Rightarrow 40000 = P(1 - 20/100)^2$

 $\Rightarrow 40000 = P(1 - 1/5)^2$

 $\Rightarrow 40000 = P (4/5)^2$

 $\Rightarrow 40000 = P \times 16/25$

 $\Rightarrow P = 40000 \times 25/16$

 $\Rightarrow P = 2500 \times 25$

 $\Rightarrow P = 62500$

... Value of a machine 2 years ago is Rs.62500.

11. Question

Answer

Let 3 years ago population = P

Present population = 33275

Time, n = 3 years

Increases rate, R = 10% per annum

Now,

Amount (A) = $P(1 + R/100)^n$ [Where, A = Amount with compound interest

CLASS24

P = Present value

R = Annual interest rate

n = Time in years]

 \therefore Population = P (1 + R/100)ⁿ

 $\Rightarrow 33275 = P(1 + 10/100)^3$

 \Rightarrow 33275 = P (1 + 1/10)³

 $\Rightarrow 33275 = P(11/10)^3$

 $\Rightarrow 33275 = P \times 1331/1000$

 $\Rightarrow P = 33275 \times 1000/1331$

 $\Rightarrow P = 25 \times 1000$

 $\Rightarrow P = 25000$

:. 3 years ago population is 25000.

12. Question

Answer

Interest rate, R = 5% per annum

CLASS24

Time = 3 years

Simple interest = Rs.1200

Simple interest = PRT/100

$$\Rightarrow 1200 = (P \times 5 \times 3)/100$$

$$\Rightarrow 1200 = P \times 15/100$$

$$\Rightarrow P = 1200 \times 100/15$$

$$\Rightarrow P = 8000$$

Now,

Amount (A) = $P(1 + R/100)^n$

$$= 8000 (1 + 5/100)^3$$

$$= 8000 (1 + 1/20)^3$$

$$= 8000 (21/20)^3$$

$$= 8000 \times 9261/8000$$

$$= 9261$$

$$\therefore$$
 Compound interest = Rs.(9261 - 8000) [\because CI = A - P]

$$= Rs.1261$$

13. Question

Answer

Compound interest, CI = Rs.510

Interest rate, $R = 12\frac{1}{2}\% = 25/2\%$ per annum

Time = 2 years

$$CI = P(1 + R/100)^n - P$$

$$\Rightarrow$$
 510 = P (1 + (25/2)/100)² - P

$$\Rightarrow$$
 510 = P (1 + 1/8)² - P

$$\Rightarrow 510 = P (9/8)^2 - P$$

$$\Rightarrow$$
 510 = 81P/64 - P

$$\Rightarrow 510 = (81P - 64P)/64$$

$$\Rightarrow 510 = 17P/64$$

 $\Rightarrow P = 510 \times 64/17$

 $\Rightarrow P = 30 \times 64$

 $\Rightarrow P = 1920$

Now,

SI = PRT/100

 $=(1920\times25/2\times2)/100$

 $= (1920 \times 25)/100$

= 480

∴ Simple interest = Rs.480

14. Question

Answer

Amount, A = Rs.4913

Interest rate, R = (25/4)% per annum

CLASS24

Time = 3 years

Amount (A) = $P(1 + R/100)^n$

 \Rightarrow 4913 = P (1 + (25/4)/100)³

 \Rightarrow 4913 = P (1 + 1/16)³

 $\Rightarrow 4913 = P(17/16)^3$

 $\Rightarrow 4913 = P \times 4913/4096$

 $\Rightarrow P = 4913 \times 4096/4913$

 $\Rightarrow P = 4096$

∴ Sum = Rs.4096

15. Question

Answer

Present value, P = Rs.7500

Amount, A = Rs.8427

Time, n = 2 years

Now,

CLASS24

Amount (A) = $P(1 + R/100)^n$

 \Rightarrow 8427 = 7500 (1 + R/100)²

 \Rightarrow (1 + R/100)² = 8427/7500

 $\Rightarrow (1 + R/100)^2 = (53/50)^2$

 \Rightarrow (1 + R/100) = (53/50)

 $\Rightarrow R/100 = 53/50 - 1$

 $\Rightarrow R/100 = (53 - 50)/50$

 $\Rightarrow R = 3/50 \times 100$

 $\Rightarrow R = 6$

∴ Rate = 6%