7. Factorisation

Exercise 7A

1. Question

Answer

(i) 12x + 15

Taking 3 as common from the whole, we get,

$$12x + 15 = 3(4x + 5).$$

(ii) 14m - 21,

Taking 7 as common from the whole, we get,

$$14m - 21 = 7(2m - 3)$$

(iii) 9n - 12n2.

Taking 3n as common from the whole, we get,

$$9n - 12n^2 = 3n (3 - 4n).$$

2. Question

Answer

(i) Let's take HCF of 16a2 - 24ab

Taking 8a as common from the whole, we get,

$$16a^2 - 24ab = 8a(2a - 3b)$$
.

(ii) 15ab2 - 20a2b.

Taking 5ab as common from the whole, we get,

$$15ab^2 - 20a^2b = 5ab(3b - 4a)$$

(iii)
$$12x^2y^3 - 21x^3y^2$$
,

Taking $3x^2y^2$ as common from the whole, we get,

$$12x^2y^3 - 21x^3y^2 = 3x^2y^2(4y - 7x)$$

3. Question

Answer

(i)

CLASS24

Taking 12x2 as common from the whole, we get,

$$24x^3 - 36x^2y = 12x^2(2x - 3y)$$

(ii)

Taking 5x2 as common from the whole, we get,

$$10x^3 - 15x^2 = 5x^2(2x - 3)$$

(iii)

Taking 12x2y as common from the whole, we get,

$$36x^3y - 60x^2y^3z = 12x^2y(3x - 5y^2z)$$

4. Question

Answer

(i) Let's find out the HCF of $9x^3$, $6x^2$, 12x

$$3x = 9x^3, 6x^2, 12x$$
 $3x^2, 2x, 4$

3x is the highest common factor which divides $9x^3$, $6x^2$ and 12x.

So,

$$9x^3 - 6x^2 + 12x = 3x(3x^2 - 2x + 4)$$

(ii) Let's find out the HCF of 8x3, 72xy and 12x

4x is the highest common factor which divides 8x3, 72xy and 12x.

$$8x^3 - 72xy + 12x = 4x(2x^2 - 18y + 3)$$

(iii) Let's find out the HCF of $18a^3b^3$, $27a^2b^3$, $36a^3b^2$

 $9a^2b^2$ is the highest common factor which divides $18a^3b^3$, $27a^2b^3$, $36a^3b^2$.

50,

$$18a^3b^3 - 27a^2b^3 + 36a^3b^2 = 9a^2b^2$$
 (2ab - 3b + 4a)

5. Question

Answer

(i) Let's find out the HCF of $14x^3$, $21x^4y$ and $28x^2y^2$

 $7x^2$ is the highest common factor of $14x^3$, $21x^4y$, $28x^2y^2$

So,

$$14x^3 + 21x^4y - 28x^2y^2 = 7x^2(2x + 3x^2y - 4y^2)$$

(ii) Let's find out the HCF of 5, 10t and 20t2,

5 is the highest common factor of 5, 10t and 20t2.

So,

$$-5 - 10t + 20t^2 = -5(1 + 2t - 4t^2)$$

CLASS24

(Note: As we have learned in the previous chapter when we multiplied - sign with - sign it become +)

6. Question

Answer

(i)

Taking x + 3 as common from the whole, we get,

$$(x + 3)(x + 5).$$

Hence,
$$x(x + 3) + 5(x + 3) = (x + 3)(x + 5)$$

(ii)

Taking x - 4 as common from the whole, we get,

$$5x(x-4)-7(x-4)=(x-4)(5x-7).$$

(iii)

Taking 1 - n as common from the whole, we get,

$$2m(1-n) + 3(1-n) = (1-n)(2m + 3).$$

7. Question

Answer

Taking a - 2b as common from the whole, we get,

$$= (a - 2b)(6a + 5b).$$

8. Question

Factories:

$$x^{3}(2a - b) + x^{2}(2a - b)$$

Answer

$$x^{3}(2a - b) + x^{2}(2a - b)$$

Taking 2a - b as common from the whole, we get,

$$= (2a - b)(x^3 + x^2).$$

9. Question

$$= (3a - 5b)(9a - 12a^2).$$

Answer

Taking (x + 5) as common from the whole, we get,

$$= (x + 5)\{(x + 5) - 4\}$$

$$= (x + 5)(x + 5 - 4)$$

$$= (x + 5)(x + 1)$$

50,

The factors of $(x + 5)^2 - 4(x + 5)$ are: (x + 5) and (x + 1)

11. Question

Answer

$$= (a - 2b) \{3(a - 2b) - 5\}$$

$$= (a - 2b){(3a - 6b) - 5}$$

$$= (a - 2b)(3a - 6b - 5)$$

So,

We get,

$$3(a - 2b)^2 - 5(a - 2b) = (a - 2b)(3a - 6b - 5)$$

12. Question

Answer

$$2a + 6b - 3(a + 3b)^2 = 2(a + 3b) - 3(a + 3b)^2$$

$$= (a + 3b){2 - 3(a + 3b)}$$

$$= (a + 3b){2 - 3a - 9b}$$

13. Question

$$16(2p - 3q)^2 - 4(2p - 3q)$$

$$= (2p - 3q)\{16(2p - 3q) - 4\}$$

$$= (2p - 3q)\{(32p - 48q) - 4\}$$

$$= (2p - 3q)(32p - 48q - 4)$$

$$= 4(2p - 3q)(8p - 12q - 1)$$

So,

We get,

$$16(2p - 3q)^2 - 4(2p - 3q) = 4(2p - 3q)(8p - 12q - 1)$$

14. Question

Answer

$$= x(a - 3) - y(a - 3)$$

$$= (a - 3)(x - y)$$

15. Question

Answer

$$= 12(2x - 3y)^2 + 16(2x - 3y)$$

[Taking (2x - 3y) common from the expression]

$$= (2x - 3y) \{12(2x - 3y) + 16\}$$

$$= (2x - 3y)(24x - 36y + 16)$$

[Taking 4 common from the expression]

$$= 4(2x - 3y)(6x - 9y + 4)$$

So,

We get,

$$12(2x - 3y)^2 - 16(3y - 2x) = 4(2x - 3y)(6x - 9y + 4)$$

16. Question

$$= (x + y)\{(2x + 5) - (x + 3)\}$$

$$= (x + y)(2x + 5 - x - 3)$$

$$= (x + y)(2x - x + 5 - 3)$$

$$= (x + y)(x + 2)$$

We get,

$$(x + y)(2x + 5) - (x + y)(x + 3) = (x + y)(x + 2)$$

17. Question

Answer

First group the terms together;

$$= (ar + br) + (at + bt)$$

$$= r(a + b) + t(a + b)$$

$$= (a + b)(r + t)$$

So,

We get,

$$ar + br + at + bt = (a + b)(r + t)$$

18. Question

Answer

Let's arrange the terms in a suitable form;

$$x^2 - ax - bx + ab$$

$$= x^2 - bx - ax + ab$$

$$= (x^2 - bx) - (ax - ab)$$

$$= x(x - b) - a(x - b)$$

$$= (x - b)(x - a)$$

So we get,

$$x^{2} - ax - bx + ab = (x - b)(x - a)$$

19. Question

Answer

Let's first arrange the terms in a suitable form;

$$ab^2 - bc^2 - ab + c^2$$

$$= ab^2 - ab - bc^2 + c^2$$

$$= (ab^2 - ab) - (bc^2 - c^2)$$

$$= ab(b-1) - c^2(b-1)$$

$$= (b - 1)(ab - c^2)$$

So we get,

$$ab^{2} - bc^{2} - ab + c^{2} = (b - 1)(ab - c^{2})$$

20. Question

Answer

Let's first arrange the terms in a suitable form;

CLASS24

$$x^2 - xz + xy - yz$$

$$= x^2 + xy - xz - yz$$

$$= (x^2 + xy) - (xz + yz)$$

$$= x(x + y) - z(x + y)$$

$$= (x + y)(x - z)$$

So we get,

$$x^2 - xz + xy - yz = (x + y)(x - z)$$

21. Question

Answer

$$= 6ab + 12ac - b^2 - 2bc$$

$$= (6ab + 12ac) - (b^2 + 2bc)$$

$$= 6a(b + 2c) - b(b + 2c)$$

$$= (b + 2c)(6a - b)$$

So we get,

$$6ab - b^2 + 12ac - 2bc = (b + 2c)(6a - b)$$

22. Question

$$(x - 2y)^2 + 4x - 8y$$

$$= (x - 2y)^2 + 4(x - 2y)$$

$$= (x - 2y)(x - 2y) + 4(x - 2y)$$

$$= (x -2y)\{(x -2y) +4\}$$

So we get,

$$(x-2y)^2 + 4x - 8y = = (x-2y)(x-2y+4)$$

23. Question

Answer

$$y^2 - xy(1 - x) - x^3$$

$$= y^2 - xy + x^2y - x^3$$

$$= (y^2 - xy) + (x^2y - x^3)$$

$$= y(y-x) + x^2(y-x)$$

$$= (y-x)(y+x^2)$$

So we get,

$$y^2 - xy(1 - x) - x^3 = (y - x)(y + x^2)$$

24. Question

Answer

$$(ax + by)^2 + (bx - ay)^2$$

By using the formulas;

$$(a + b)^2 = a^2 + b^2 + 2ab$$
 and

$$(a - b)^2 = a^2 + b^2 - 2ab$$

$$= (a^2x^2 + b^2y^2 + 2axby) + (b^2x^2 + a^2y^2 - 2bxay)$$

$$= a^2x^2 + a^2y^2 + b^2y^2 + b^2x^2 + 2axby - 2bxay$$

$$= a^2(x^2 + y^2) + b^2x^2 + b^2y^2 + 2axby - 2axby$$

$$= a^2(x^2 + y^2) + b^2(x^2 + y^2)$$

$$=(x^2+y^2)(a^2+b^2)$$

So we get,

$$(ax + by)^2 + (bx - ay)^2 = (x^2 + y^2)(a^2 + b^2)$$

25. Question

$$ab^2 + (a - 1)b - 1$$

$$= ab^2 + ba - b - 1$$

$$= (ab^2 + ba) - (b + 1)$$

$$= ab (b + 1) - 1(b + 1)$$

$$= (b + 1)(ab - 1)$$

So we get,

$$ab^2 + (a - 1)b - 1 = (b + 1)(ab - 1)$$

CLASS24

26. Question

Answer

$$= (x^3 - 3x^2) + (x - 3)$$

$$= x^2(x-3) + 1(x-3)$$

$$= (x - 3)(x^2 + 1)$$

So we get,

$$x^3 - 3x^2 + x - 3 = (x - 3)(x^2 + 1)$$

27. Question

Answer

$$= abx^2 + aby^2 - a^2xy - b^2xy$$

$$= abx^2 - a^2xy + aby^2 - b^2xy$$

$$= ax(bx - ay) + by(ay - bx)$$

$$= ax(bx - ay) - by(bx - ay)$$

$$= (bx - ay)(ax - by)$$

So we get,

$$ab(x^2 + y^2) - xy(a^2 + b^2) = (bx - ay)(ax - by)$$

28. Question

$$= x^2 - ax - 2bx + 2ab$$

$$= x^2 - 2bx - ax + 2ab$$

$$= (x^2 - 2bx) - (ax - 2ab)$$

$$= x(x - 2b) - a(x - 2b)$$

= (x - 2b)(x - a)

So we get,

 $x^2 - x(a + 2b) + 2ab = (x - 2b)(x - a)$

CLASS24

Exercise 7B

1. Question

Answer

We have,

Which is,

$$= (x)^2 - (6)^2$$

By using the formula $a^2 - b^2 = (a + b)(a - b)$

We get,

$$x^2 - 36 = (x)^2 - (6)^2$$

$$= (x + 6)(x - 6)$$

2. Question

Answer

We have,

$$= (2a)^2 - (3)^2$$

By using the formula $a^2 - b^2 = (a + b)(a - b)$

We get,

$$4a^2 - 9 = (2a)^2 - (3)^2$$

$$= (2a + 3)(2a - 3)$$

3. Question

Answer

We have,

$$= (9)^2 - (7x)^2$$

By using the formula $a^2 - b^2 = (a + b)(a - b)$

$$81 - 49x^2 = (9)^2 - (7x)^2$$

= (9 + 7x)(9 - 7x)

CLASS24

4. Question

Factories:

Answer

We have,

$$= (2x)^2 - (3y)^2$$

By using the formula $a^2 - b^2 = (a + b)(a - b)$

We get,

$$4x^2 - 9y^2 = (2x)^2 - (3y)^2$$

$$= (2x + 3y)(2x - 3y)$$

5. Question

Answer

We have,

$$= (4a)^2 - (15b)^2$$

By using the formula $a^2 - b^2 = (a + b)(a - b)$

We get,

$$16a^2 - 225b^2 = (4a)^2 - (15b)^2$$

$$= (4a + 15b)(4a - 15b)$$

6. Question

Answer

We have,

$$= (3ab)^2 - (5)^2$$

By using the formula $a^2 - b^2 = (a + b)(a - b)$

We get,

$$9a^2b^2 - 25 = (3ab)^2 - (5)^2$$

$$= (3ab + 5)(3ab - 5)$$

7. Question

We have,

$$= (4a)^2 - (12)^2$$

By using the formula $a^2 - b^2 = (a + b)(a - b)$

We get,

$$16a^2 - 144 = (4a)^2 - (12)^2$$

$$= (4a + 12)(4a - 12)$$

$$= 4(a + 3) 4(a - 3)$$

$$= 16(a + 3)(a - 3)$$

8. Question

Answer

We have,

$$= 7(9a^2 - 16b^2)$$

By using the formula $a^2 - b^2 = (a + b)(a - b)$

We get,

$$63a^2 - 112b^2 = 7(9a^2 - 16b^2)$$

$$= 7{(3a)^2 - (4b)^2}$$

$$= 7(3a + 4b)(3a - 4b)$$

9. Question

Answer

We have,

$$= 5(4a^2 - 9b^2)$$

By using the formula $a^2 - b^2 = (a + b)(a - b)$

$$20a^2 - 45b^2 = 5(4a^2 - 9b^2)$$

$$= 5{(2a)^2 - (3b)^2}$$

$$= 5(2a + 3b)(2a - 3b)$$

Answer

CLASS24

We have,

$$= 3(4x^2 - 9)$$

By using the formula $a^2 - b^2 = (a + b)(a - b)$

We get,

$$12x^2 - 27 = 3(4x^2 - 9)$$

$$= 3\{(2x)^2 - (3)^2\}$$

$$= 3(2x + 3)(2x - 3)$$

11. Question

Answer

We have,

$$= x(x^2 - 64)$$

By using the formula $a^2 - b^2 = (a + b)(a - b)$

We get,

$$x^3 - 64x = x(x^2 - 64)$$

$$= x{(x)^2 - (8)^2}$$

$$= x(x+8)(x-8)$$

12. Question

Answer

We have,

$$= 3x^3(x^2 - 9)$$

By using the formula $a^2 - b^2 = (a + b)(a - b)$

$$16x^5 - 144x^3 = 3x^3(x^2 - 9)$$

$$= 16x^3\{(x)^2 - (3)^2\}$$

$$= 16x^3(x + 3)(x - 3)$$

Answer

CLASS24

We have,

$$= 3x^3(x^2 - 16)$$

By using the formula $a^2 - b^2 = (a + b)(a - b)$

We get,

$$3x^5 - 48x^3 = 3x^3(x^2 - 16)$$

$$= 3x^3\{(x)^2 - (4)^2\}$$

$$= 3x^3(x + 4)(x - 4)$$

14. Question

Answer

We have,

$$=4p(4p^2-1)$$

By using the formula $a^2 - b^2 = (a + b)(a - b)$

We get,

$$16p^3 - 4p = 4p(4p^2 - 1)$$

$$=4p\{(2p)^2-(1)^2\}$$

$$=4p(2p+1)(2p-1)$$

15. Question

Answer

We have,

$$= 7(9a^2b^2 - 1)$$

By using the formula $a^2 - b^2 = (a + b)(a - b)$

$$63a^2b^2 - 7 = 7(9a^2b^2 - 1)$$

$$= 7{(3ab)^2 - (1)^2}$$

$$= 7(3ab + 1)(3ab - 1)$$

Answer

CLASS24

We have,

$$= (1)^2 - (b - c)^2$$

By using the formula $a^2 - b^2 = (a + b)(a - b)$

We get,

$$1 - (b - c)^2 = (1)^2 - (b - c)^2$$

$$= \{1 + (b - c)\}\{1 - (b - c)\}$$

$$= (1 + b - c)(1 - b + c)$$

17. Question

Answer

$$(2a + 3b)^2 - (4c)^2$$

By using the formula $a^2 - b^2 = (a + b)(a - b)$

We get,

$$(2a + 3b)^2 - 16c^2 = (2a + 3b)^2 - (4c)^2$$

$$= \{(2a + 3b) + 4c\}\{(2a + 3b) - 4c\}$$

$$= (2a + 3b + 4c)(2a + 3b - 4c)$$

18. Question

Answer

We have,

$$(l + m)^2 - (l - m)^2$$

By using the formula $a^2 - b^2 = (a + b)(a - b)Here, a = (I + m)$ and b = (I - m)

$$\Rightarrow (I + m)^{2} - (I - m)^{2} = \{(I + m) + (I - m)\}\{(I + m) - (I - m)\}$$
$$= (I + m + I - m)(I + m - I + m)$$

=4lm

$$= (21)(2m)$$

19. Question

Given,

$$(2x + 5y)^2 - (1)^2$$

$$= (2x + 5y)^2 - (1)^2$$

By using the formula $a^2 - b^2 = (a + b)(a - b)$

We get,

$$(2x + 5y)^2 - (1)^2 = (2x + 5y)^2 - (1)^2$$

$$= \{(2x + 5y) + 1\}\{(2x + 5y) - 1\}$$

$$=(2x + 5y + 1)(2x + 5y - 1)$$

20. Question

Answer

Given,

$$(6c)^2 - (5a + b)^2$$

By using the formula $a^2 - b^2 = (a + b)(a - b)$

We get,

$$36c^2 - (5a + b)^2 = (6c)^2 - (5a + b)^2$$

$$= \{(6c) + (5a + b)\}\{(6c) - (5a + b)\}$$

$$= (6c + 5a + b)(6c - 5a - b)$$

21. Question

Answer

Given,

$$= (3x - 4y)^2 - (5z)^2$$

By using the formula $a^2 - b^2 = (a + b)(a - b)$

We get,

$$(3x - 4y)^2 - 25z^2 = (3x - 4y)^2 - (5z)^2$$

$$={(3x-4y)+5z}{(3x-4y)-5z}$$

$$= (3x - 4y + 5z)(3x - 4y - 5z)$$

22. Question

Given,

$$x^2 - y^2 - 2y - 1$$

$$= x^2 - (y^2 + 2y + 1)$$

By using the formula $a^2 - b^2 = (a + b)(a - b)$

We get,

$$x^2 - y^2 - 2y - 1 = x^2 - (y^2 + 2y + 1)$$

$$= (x)^2 - (y + 1)^2$$

$$= \{x + (y + 1)\}\{x - (y + 1)\}$$

$$= (x + y + 1)(x - y - 1)$$

23. Question

Answer

Given,

$$= 25 - (a^2 + b^2 + 2ab)$$

By using the formula $a^2 - b^2 = (a + b)(a - b)$

We get,

$$25 - a^2 - b^2 - 2ab = 25 - (a^2 + b^2 + 2ab)$$

$$= 25 - (a + b)^2$$

$$=(5)^2 - (a + b)^2$$

$$= \{5 + (a + b)\}\{5 - (a + b)\}$$

$$= (5 + a + b)(5 - a - b)$$

24. Question

Answer

Given,

$$25a^2 - 4b^2 + 28bc - 49c^2$$

$$= 25a^2 - (4b^2 - 28bc + 49c^2)$$

By using the formula $a^2 - b^2 = (a + b)(a - b)$

$$25a^2 - 4b^2 + 28bc - 49c^2 = 25a^2 - (4b^2 - 28bc + 49c^2)$$

$$= (5a)^2 - (2b - 7c)^2$$

$$= \{5a + (2b - 7c)\}\{5a - (2b - 7c)\}\$$

= (5a + 2b - 7c)(5a - 2b + 7c)

CLASS24

25. Question

Answer

Given,

$$9a^2 - (b^2 - 4b + 4)$$

By using the formula $a^2 - b^2 = (a + b)(a - b)$

We get,

$$9a^2 - b^2 + 4b - 4 = 9a^2 - (b^2 - 4b + 4)$$

$$= (3a)^2 - (b - 2)^2$$

$$= {3a + (b-2)}{3a - (b-2)}$$

$$= (3a + b - 2)(3a - b + 2)$$

26. Question

Answer

Given,

By using the formula $a^2 - b^2 = (a + b)(a - b)$

We get,

$$100 - (x - 5)^2 = (10)^2 - (x - 5)^2$$

$$= \{10 + (x - 5)\}\{10 - (x - 5)\}$$

$$=(10+x-5)(10-x+5)$$

$$= (5 + x)(15 - x)$$

27. Question

Answer

Given,

By using the formula $a^2 - b^2 = (a + b)(a - b)$

$${(405)^2 - (395)^2} = (405 + 395)(405 - 395)$$

$$= (800 \times 10)$$

Answer

We have,

By using the formula $a^2 - b^2 = (a + b)(a - b)$

We get,

$$\{(7.8)^2 - (2.2)^2\} = (7.8 + 2.2)(7.8 - 2.2)$$

$$= (10 \times 5.6)$$

= 56

50,

$$\{(7.8)^2 - (2.2)^2\} = 56$$

Exercise 7C

1. Question

Answer

Given,

By using the formula $(a + b)^2 = a^2 + 2ab + b^2$

We get,

$$= x^2 + 2 \times (x) \times 4 + (4)^2$$

$$= (x + 4)^2$$

2. Question

Answer

Given;

By using the formula $(a + b)^2 = a^2 + 2ab + b^2$

We get,

$$= x^2 + 2 \times (x) \times 7 + (7)^2$$

$$= (x + 7)^2$$

3. Question

Given,

$$1 + 2x + x^2 = x^2 + 2x + 1$$

By using the formula $(a + b)^2 = a^2 + 2ab + b^2$

We get,

$$= x^2 + 2 \times (x) \times 1 + (1)^2$$

$$= (x + 1)^2$$

$$= (x + 1)(x + 1)$$

4. Question

Answer

Given,

$$9 + 6z + z^2 = z^2 + 6z + 9$$

By using the formula $(a + b)^2 = a^2 + 2ab + b^2$

We get,

$$=z^2+2\times z\times 3+(3)^2$$

$$= (3 + z)^2$$

5. Question

Answer

Given;

$$x^2 + 6ax + 9a^2$$

By using the formula $(a + b)^2 = a^2 + 2ab + b^2$

We get,

$$= x^2 + 2 \times (x) \times 3a + (3a)^2$$

$$= (x + 3a)^2$$

6. Question

Answer

Given;

$$4y^2 + 20y + 25$$

By using the formula $(a + b)^2 = a^2 + 2ab + b^2$

$$= (2y)^2 + 2 \times 2y \times 5 + (5)^2$$

$$= (2y + 5)^2$$

Answer

Given,

By using the formula $(a + b)^2 = a^2 + 2ab + b^2$

We get,

$$= (6a)^2 + 2 \times 6a \times 3 + (3)^2$$

$$= (6a + 3)^2$$

8. Question

Answer

Given,

$$9m^2 + 24m + 16$$

By using the formula $(a + b)^2 = a^2 + 2ab + b^2$

We get,

$$= (3m)^2 + 2 \times 3m \times 4 + (4)^2$$

$$= (3m + 4)^2$$

9. Question

Answer

Given,

$$z^2 + z + \frac{1}{4}$$

By using the formula $(a + b)^2 = a^2 + 2ab + b^2$

We get,

$$= z^2 + 2 \times z \times \frac{1}{2} + \left(\frac{1}{2}\right)^2$$

$$=\left(z+\frac{1}{2}\right)$$

10. Question

Given,

$$49a^2 + 84ab + 36b^2$$

By using the formula $(a + b)^2 = a^2 + 2ab + b^2$

We get,

$$= (7a)^2 + 2 \times 7a \times 6b + (6b)^2$$

$$= (7a + 6b)^2$$

11. Question

Answer

Given,

$$P^2 - 10p + 25$$

By using the formula $(a - b)^2 = a^2 - 2ab + b^2$

We get,

$$= p^2 - 2 \times p \times 5 + (5)^2$$

$$= (p - 5)^2$$

12. Question

Answer

Given,

By using the formula $(a - b)^2 = a^2 - 2ab + b^2$

We get,

$$= (11a)^2 - 2 \times 11a \times 4b + (4b)^2$$

$$= (11a - 4b)^2$$

13. Question

Answer

Given,

$$1 - 6x + 9x^2 = 9x^2 - 6x + 1$$

By using the formula $(a - b)^2 = a^2 - 2ab + b^2$

$$= (3x)^2 - 2 \times (3x) \times 1 + (1)^2$$

$$= (3x - 1)^2$$

Answer

Given,

$$9y^2 - 12y + 4$$

By using the formula $(a - b)^2 = a^2 - 2ab + b^2$

We get,

$$= (3y)^2 - 2 \times 3y \times 2 + (2)^2$$

$$= (3y - z)^2$$

15. Question

Answer

Given,

$$16x^2 - 24x + 9$$

By using the formula $(a - b)^2 = a^2 - 2ab + b^2$

$$= (4x)^2 - 2 \times (4x) \times 3 + (3)^2$$

$$= (4x - 3)^2$$

16. Question

Answer

Given,

$$m^2 - 4mn + 4n^2$$

By using the formula $(a - b)^2 = a^2 - 2ab + b^2$

$$= m^2 - 2 \times m \times 2n + (2n)^2$$

$$= (m - 2n)^2$$

17. Question

Answer

Given,

By using the formula $(a - b)^2 = a^2 + b^2 - 2ab$

CLASS24

We get,

=
$$(ab)^2 - 2 \times ab \times 3c + (3c)^2$$

$$= (ab - 3c)^2$$

18. Question

Answer

Given,

By using the formula $(a + b)^2 = a^2 + b^2 + 2ab$

We get,

$$= (m^2)^2 + 2 \times m^2 \times n^2 + (n^2)^2$$

$$= (m^2 + n^2)$$

19. Question

Answer

Given,

By using the formula $(a + b)^2 = a^2 + b^2 + 2ab$

We get,

$$(1 + m)^2 - 4lm = (l^2 + m^2 + 2lm) - 4lm$$

$$= l^2 + m^2 + 2lm - 4lm$$

$$= l^2 + m^2 - 2lm$$

$$= (1)^2 + (m)^2 - 2 \times 1 \times m$$

$$= (l - m)^2$$

Exercise 7D

1. Question

Answer

Given,

Now first find the numbers whose-

Required numbers are 2 and 3,

So we get;

$$x^2 + 5x + 6$$

$$= x^2 + 2x + 3x + 6$$

$$= x(x + 2) + 3(x + 2)$$

$$= (x + 2)(x + 3)$$

2. Question

Answer

Given,

Now first find the numbers whose-

Sum = 10 and

Product = 24

Required numbers are 6 and 4,

So we get;

$$y^2 + 10y + 24 = y^2 + 6y + 4y + 24$$

$$= y(y + 6) + 4(y + 6)$$

$$= (y + 6)(y + 4)$$

3. Question

Answer

Now first find the numbers whose-

$$Sum = 12$$
 and

$$Product = 27$$

Required numbers are 9 and 3,

So we get;

$$z^2 + 12z + 27$$

$$= z^2 + 9z + 3z + 27$$

$$= z(z + 9) + 3(z + 9)$$

$$=(z + 9)(z + 3)$$

4. Question

Answer

Given,

Now first find the numbers whose-

CLASS24

Sum = 6 and

Product = 8

Required numbers are 4 and 2,

So we get;

$$p^2 + 6p + 8$$

$$= p^2 + 4p + 2p + 8$$

$$= p(p + 4) + 2(p + 4)$$

$$= (p + 4)(p + 2)$$

5. Question

Answer

Given,

Now first find the numbers whose-

Sum = 15 and

Product = 56

Required numbers are 7 and 8,

So we get;

$$x^2 + 15x + 56$$

$$= x^2 + 7x + 8x + 56$$

$$= x(x + 7) + 8(x + 7)$$

$$= (x + 7)(x + 8)$$

6. Question

Answer

Now first find the numbers whose-

Sum = 19 and

Required numbers are 15 and 4,

So we get;

$$y^2 + 19y + 60$$

$$= y^2 + 15y + 4y + 60$$

$$= y(y + 15) + 4(y + 15)$$

$$= (y + 15)(y + 4)$$

7. Question

Answer

Given,

Now first find the numbers whose-

Sum = 13 and

Product = 40

Required numbers are 8 and 5,

So we get;

$$x^2 + 13x + 40$$

$$= x^2 + 8x + 5x + 40$$

$$= x(x + 8) + 5(x + 8)$$

$$= (x + 8)(x + 5)$$

8. Question

Answer

Given,

Now first find the numbers whose-

Sum
$$= -10$$
 and

$$Product = 21$$

Required numbers are 7 and 3,

So we get;

$$q^2 - 10q + 21$$

$$= q^2 - 7q - 3q + 21$$

$$= q(q - 7) - 3(q - 7)$$

Answer

Given,

Now first find the numbers whose-

Sum = 6 and

Product = -16

Required numbers are 8 and 2,

So we get;

$$p^2 + 6p - 16$$

$$= p^2 + 8p - 2p - 16$$

$$= p(p + 8) - 2(p + 8)$$

$$= (p + 8)(p - 2)$$

10. Question

Answer

Given,

Now first find the numbers whose-

Sum = -10 and

Product = 24

Required numbers are 6 and 4,

So we get;

$$x^2 - 10x + 24$$

$$= x^2 - 6x - 4x + 24$$

$$= x(x - 6) - 4(x - 6)$$

$$= (x - 6)(x - 4)$$

11. Question

Answer

Given,

Sum = -23 and

Product = 42

The numbers are 21 and 2,

So,

$$x^2 - 23x + 42 = x^2 - 21x - 2x + 42$$

$$= x(x - 21) - 2(x - 21)$$

$$= (x - 21)(x - 2)$$

12. Question

Answer

Given,

Now, first we have to find out the numbers whose-

Sum = -17 and

Product = 16

The numbers are 16 and 1,

So,

$$x^2 - 17x + 16 = x^2 - 16x - 1x + 16$$

$$= x(x - 16) - 1(x - 16)$$

$$= (x - 16)(x - 1)$$

13. Question

Factorize:

Answer

Given,

Now, first we have to find out the numbers whose-

Sum = -21 and

Product = 90

The numbers are 15 and 6,

So,

$$y^2 - 21y + 90 = y^2 - 15y - 6y + 90$$

$$= y(y - 15) - 6(y - 15)$$

$$= (y - 15)(y - 6)$$

Answer

CLASS24

Given,

Now, first we have to find out the numbers whose-

Sum = -22 and

Product = 117

The numbers are 13 and 9,

So,

$$x^2 - 22x + 117 = x^2 - 13x - 9x + 117$$

$$= x(x - 13) - 9(x - 13)$$

$$= (x - 13)(x - 9)$$

15. Question

Answer

Now, first we have to find out the numbers whose-

Sum = -9 and

Product = 20

The numbers are 5 and 4,

50,

$$x^2 - 9x + 20 = x^2 - 5x - 4x + 20$$

$$= x(x-5) - 4(x-5)$$

$$= (x - 5)(x - 4)$$

16. Question

Answer

Now, first we have to find out the numbers whose-

Sum = 1 and

Product = -132

The numbers are 12 and 11,

So,

$$=(x+12)(x-11)$$

= x(x + 12) - 11(x + 12)

17. Question

Answer

Now, first we have to find out the numbers whose-

$$Sum = 5$$
 and

$$Product = -104$$

The numbers are 13 and 8,

So,

$$x^2 + 5x - 104 = x^2 + 13x - 8x - 104$$

$$= x(x + 13) - 8(x + 13)$$

$$= (x + 13)(x - 8)$$

18. Question

Answer

Now, first we have to find out the numbers whose-

$$Sum = 7$$
 and

$$Product = -144$$

The numbers are 16 and - 9,

So,

$$y^2 + 7y - 144$$

$$= y^2 + 16y - 9y - 144$$

$$= y(y + 16) - 9(y + 16)$$

$$= (y + 16)(y - 9)$$

19. Question

Answer

Given,

Now, first we have to find out the numbers whose-

CLASS24

Sum = 19 and

Product = -150

The numbers are 25 and 6,

So,

$$z^2 + 19z - 150$$

$$= z^2 + 25z - 6z - 150$$

$$= z(z + 25) - 6(z + 25)$$

$$= (z + 25)(z - 6)$$

20. Question

Answer

Given,

Now, first we have to find out the numbers whose-

Sum = 1 and

Product = -72

The numbers are 9 and 8,

So,

$$y^2 + y - 72$$

$$= y^2 + 9y - 9y - 72$$

$$= y(y + 9) - 9(y + 9)$$

$$= (y + 9)(y - 9)$$

21. Question

Answer

Now, first we have to find out the numbers whose-

Sum = 6 and

Product = -91

The numbers are 13 and 7,

So,

$$= a^2 + 13a - 7a - 91$$

Answer

Now, first we have to find out the numbers whose-

Sum = -4 and

Product = -77

The numbers are 11 and 7,

So,

$$= p^2 - 11p + 7p - 77$$

$$= p(p - 11) + 7(p - 11)$$

$$= (p-11)(p+7)$$

23. Question

Answer

Now, first we have to find out the numbers whose-

Sum = -7 and

Product = -30

The numbers are 10 and 3,

So,

$$x^2 - 7x - 30$$

$$= x^2 - 10x + 3x - 30$$

$$= x(x - 10) + 3(x - 10)$$

$$= (x - 10)(x + 3)$$

24. Question

Answer

Now, first we have to find out the numbers whose-

The numbers are 14 and 3,

So,

$$x^2 - 11x - 42$$

$$= x^2 - 14x + 3x - 42$$

$$= x(x - 14) + 3(x + 14)$$

$$=(x-14)(x+3)$$

25. Question

Answer

Now, first we have to find out the numbers whose-

$$Sum = -5$$
 and

$$Product = -24$$

The numbers are - 8 and 3,

So,

$$x^2 - 5x - 24$$

$$= x^2 - 8x + 3x - 24$$

$$= x(x - 8) + 3(x - 8)$$

$$= (x - 8)(x + 3)$$

26. Question

Answer

Given;

Now first find the numbers whose-

$$Sum = -6$$
 and

$$Product = -135$$

Required numbers are 15 and 9,

So we get;

$$y^2 - 6y - 135$$

$$= y^2 - 15y + 9y - 135$$

$$= y(y - 15) + 9(y - 15)$$

Answer

Given

Now first find the numbers whose-

Sum = -12 and

Product = -45

Required numbers are 15 and 3,

So we get;

$$= z^2 - 15z + 3z - 45$$

$$= z(z - 15) + 3(z - 15)$$

$$= (z - 15)(z + 3)$$

28. Question

Answer

Given,

Now first find the numbers whose-

Sum = -4 and

Product = -12

Required numbers are 6 and 2,

So we get;

$$x^2 - 4x - 12$$

$$= x^2 - 6x + 2x - 12$$

$$= x(x-6) + 2(x-6)$$

$$= (x - 6)(x + 2)$$

29. Question

Answer

Given,

Sum = 10 and

Product = $3 \times 8 = 24$

Required numbers are 6 and 4,

So we get;

$$3x^2 + 10x + 8$$

$$= 3x^2 + 6x + 4x + 8$$

$$= 3x(x + 2) + 4(x + 2)$$

$$=(x + 2)(3x + 4)$$

30. Question

Answer

Given,

Now first find the numbers whose-

Sum = 14 and

Product = $3 \times 8 = 24$

Required numbers are 12 and 2,

So we get;

$$3y^2 + 14y + 8 = 3y^2 + 12y + 2y + 8$$

$$= 3y(y + 4) + 2(y + 4)$$

$$= (y + 4)(3y + 2)$$

31. Question

Answer

Given,

Now, first we have to find out the numbers whose-

Sum = -10 and

Product = $3 \times 8 = 24$

The numbers are 6 and 4,

So,

$$3z^2 - 10z + 8$$

$$= (z - 2)(3z - 4)$$

32. Question

Answer

Given,

Now first find the numbers whose-

Sum = 1 and

 $Product = -45 \times 2 = -90$

Required numbers are 10 and 9,

So we get;

$$2x^2 + x - 45$$

$$= 2x^2 + 10x - 9x - 45$$

$$= 2x(x + 5) - 9(x + 5)$$

$$=(x + 5)(2x - 9)$$

33. Question

Answer

Given,

Now first find the numbers whose-

Sum = 11 and

$$Product = -10 \times 6 = -60$$

Required numbers are 15 and 4,

So we get;

$$=6p^2+15p-4p-10$$

$$= 3p(2p + 5) - 2(2p + 5)$$

$$=(2p+5)(3p-2)$$

34. Question

Answer

Given,

Sum = -17 and

 $Product = -30 \times 2 = -60$

Required numbers are 20 and 3,

So we get;

$$2x^2 - 17x - 30$$

$$= 2x^2 - 20x + 3x - 30$$

$$= 2x(x - 10) + 3(x - 10)$$

$$= (x - 10)(2x + 3)$$

35. Question

Answer

Given,

Now first find the numbers whose-

Sum = -19 and

$$Product = -6 \times 7 = -42$$

Required numbers are 21 and 2,

So we get;

$$7y^2 - 19y - 6$$

$$= 7y^2 - 21y + 2y - 6$$

$$= 7y(y - 3) + 2(y - 3)$$

$$= (y - 3)(7y + 2)$$

36. Question

Answer

Given,

Now first find the numbers whose-

Sum
$$= -31$$
 and

$$Product = -5 \times 28 = 140$$

Required numbers are 35 and 4,

So we get;

$$= 28 + 4x - 35x - 5x^2$$

$$= 4(7 + x) - 5x(7 + x)$$

$$= (7 + x)(4 - 5x)$$

37. Question

Answer

Given,

Now first find the numbers whose-

$$Sum = 23$$
 and

Product =
$$-8 \times 3 = 24$$

Required numbers are 24 and 1,

So we get;

$$3 + 23z - 8z^2$$

$$= 3 + 24z - z - 8z^2$$

$$= 3(1 + 8z) - z(1 + 8z)$$

$$= (1 + 8z)(3 - z)$$

38. Question

Answer

Given,

Now first find the numbers whose-

$$Sum = -5$$
 and

$$Product = -6 \times 6 = -36$$

Required numbers are 9 and 4,

So we get;

$$=6x^2-9x+4x-6$$

$$= 3x(2x - 3) + 2(2x - 3)$$

$$=(2x-3)(3x+2)$$

Given,

Now first find the numbers whose-

Sum = 24 and

 $Product = 36 \times 3 = 108$

Required numbers are 18 and 6,

So we get;

$$3m^2 + 24m + 36$$

$$=3m^2+18m+6m+36$$

$$= 3m(m + 6) + 6(m + 6)$$

$$= (m + 6)(3m + 6)$$

40. Question

Answer

Given,

Now first find the numbers whose-

$$Sum = -8$$
 and

Product =
$$4 \times 3 = 12$$

Required numbers are 6 and 2,

So we get;

$$4n^2 - 8n + 3$$

$$=4n^2-2n-6n+3$$

$$= 2n(2n - 1) - 3(2n - 3)$$

$$= (2n - 1)(2n - 3)$$

41. Question

Answer

Given,

Now, first we have to find out the numbers whose-

Sum
$$= -17$$
 and

$$Product = 6 \times -3 = -18$$

The numbers are 18 and 1,

So,

$$6x^2 - 17x - 3$$

$$= 6x^2 - 18x + 1x - 3$$

$$= 6x(x - 3) + 1(x - 3)$$

$$= (x - 3)(6x + 1)$$

42. Question

Answer

Given,

Now, first we have to find out the numbers whose-

Sum
$$= -19$$
 and

$$Product = 7 \times -6 = -42$$

The numbers are 21 and 2,

So,

$$7x^2 - 19x - 6$$

$$= 7x^2 - 21x + 2x - 6$$

$$= 7x(x-3) + 2(x-3)$$

$$=(x-3)(7x+2)$$

Exercise 7E

CLASS24

1. Question

Answer

$$(7a^2 - 63b^2) = 7(a^2 - 9b^2)$$
 (taking 7 as common from whole)

$$= 7(a - 3b)(a + 3b) :: a^2 - b^2 = (a - b)(a + b)$$

Answer

CLASS24

 $(2x - 32x^3) = 2x(1 - 16x^2)$ (taking 2x as common from whole) = 2x(1 - 4x)(1 + 4x): $a^2 - b^2 = (a - b)(a + b)$

3. Question

Answer

 $X^3 - 144x = x(x^2 - 144)$ (taking x as common from whole)

$$= x(x - 12)(x + 12) :: a^2 - b^2 = (a - b)(a + b)$$

4. Question

Answer

2 - $50x^2 = 2(1 - 25x^2)$ (taking 2 as common from whole)

$$= 2(1 - 5x)(1 + 5x) :: a^2 - b^2 = (a - b)(a + b)$$

5. Question

Answer

$$a^2+bc+ab+ac = a^2+ab+bc+ac$$

Rearranging the terms and taking a and c as common respectively.

$$= a(a + b) + c(a + b)$$

$$= (a + c)(a + b).$$

Answer

CLASS24

$$pq^{2} + q(p-1) - 1 = pq^{2} + qp - q - 1$$

= $pq(q + 1) - 1(q + 1)$

$$= (pq - 1)(q + 1)$$

7. Question

Answer

=
$$ab - mn + an - bm = ab + an - mn - bm$$

= $a(b + n) - m(n + b)$
= $(a - m)(b + n)$.

8. Question

Answer

$$ab - a - b + 1$$

= $a(b - 1) - 1(b - 1)$ (taking a and - 1 as common)
= $(a - 1)(b - 1)$.

9. Question

Answer

=
$$x^2 - xz + xy - yz$$

= $x(x - z) + y(x - z)$ (taking x and y as common resp.)
= $(x + y)(x - z)$.

Answer

 $12m^2 - 27 = 3(4m^2 - 9)$ (taking 3 as common from whole)

$$= 3(2m - 3)(2m + 3)$$
: $a^2 - b^2 = (a - b)(a + b)$

11. Question

Answer

 $x^3 - x = x(x^2 - 1)$ (taking x as common from whole)

$$= x(x-1)(x+1)$$
: $a^2 - b^2 = (a-b)(a+b)$

12. Question

Answer

$$1 - 2ab - (a^2 + b^2) = 1 - 2ab - a^2 - b^2$$

$$= 1 - (2ab + a^2 + b^2)$$

$$= 1 - (a + b)^2$$

=
$$(1 - a - b)(1 + a + b)$$
: $a^2 - b^2 = (a - b)(a + b)$

13. Question

Answer

$$x^2 + 6x + 8$$

Factorizing the equation and taking x and 2 as common,

$$= x^2 + 4x + 2x + 8$$

$$= x(x + 4) + 2(x + 4)$$

$$= (x + 2)(x + 4).$$

14. Question

Answer

$$x^2 + 4x - 21$$

Factorizing the equation and taking x and - 3 as common,

$$= x^2 + 7x - 3x - 21$$

$$= x(x + 7) - 3(x + 7)$$

$$= (x - 3)(x + 7).$$

15. Question

Answer

$$y^2 + 2y - 3$$

Factorizing the equation and taking y and - 1 as common,

$$= y^2 + 3y - y - 3$$

$$= y(y + 3) - 1(y + 3)$$

$$= (y + 3)(y - 1).$$

16. Question

Answer

$$40 + 3x - x^2$$

Factorizing the equation and taking 8 and - x as common,

$$=40+8x-3x-x^{2}$$

$$= 8(5 + x) - x(5 + x)$$

$$= (8 - x)(5 + x).$$

17. Question

Answer

$$2x^2 + 5x + 3$$

Factorizing the equation and taking 2x and 3 as common,

CLASS24

$$= 2x^2 + 2x + 3x + 3$$

$$= 2x(x + 1) + 3(x + 1)$$

$$=(2x+3)(x+1).$$

18. Question

Answer

$$6a^2 - 13a + 6$$

Factorizing the equation and taking 3a and - 2 as common,

$$= 6a^2 - 9a - 4a + 6$$

$$= 3a(2a - 3) - 2(2a - 3)$$

$$= (3a - 2)(2a - 3).$$

19. Question

Answer

$$4z^2 - 8z + 3$$

Factorizing the equation and taking 2z and - 1 as common,

$$= 4z^2 - 6z - 2z + 3$$

= 2z(2z - 3) - 1(2z - 3)

= (2z - 1)(2z - 3).

20. Question

Answer

$$3 + 23y - 8y^2$$

Factorizing the equation and taking 3 and - y as common,

$$= 3 + 24y - y - 8y^2$$

$$= 3(1 + 8y) - y(1 + 8y)$$

= (3 - y)(1 + 8y).

CLASS24