Chapter 6. Triangle ## Question-1 The bisector of the exterior angle $\angle A$ of Δ ABC intersects side BC produced at D. Prove that $\frac{AB}{AC} = \frac{BD}{DC}$. ## Solution: Given: ABC is a triangle; AD is the exterior bisector of $\angle A$ and meets BC produced at D; BA is produced to F. To prove: $\frac{AB}{AC} = \frac{BD}{DC}$ Construction: Draw CE||DA to meet AB at E. Proof: In \triangle ABC, CE || AD cut by AC. \angle CAD = \angle ACE (Alternate angles) Similarly CE || AD cut by AB ∠FAD = ∠AEC (corresponding angles) Since $\angle FAD = \angle CAD$ (given) $\therefore \angle ACE = \angle AEC$ $\ AC = AE$ (by isosceles Δ theorem) Now in \triangle BAD, CE || DA <u>AE</u> = <u>DC</u> (BPT) AB BD But AC = AE (proved above) \ <u>AC = DC</u> AB BD or $$\frac{AB}{AC} = \frac{BD}{DC}$$ (proved). State and prove the converse of angle bisector theorem. ## Solution: Given: ABC is a \triangle ; AD divides BC in the ratio of the sides containing the angles $\angle A$ to meet BC at D. i.e. $$\frac{AB}{AC} = \frac{BD}{DC}$$ To prove: AD bisects ∠A. Construction: Draw CE || DA to meet BA produced at E. Proof: In Δ ABC, CE || DA cut by AE. $\ \triangle BAD = \angle AEC (corresponding angle) ---(i)$ Similarly CE || DA cut by AC \ ∠ DAC = ∠ACE (alternate angles) ----(ii) In DBEC; CE | AD $\Lambda B = BD (BPT)$ AE DC But AB = BD (given) AC DC $\AB = AB$ AE AC \ AE = AC ⇒ ∠AEC = ∠ACE (isosceles property) ---(iii) According to equation (i), (ii) and (iii) ∠BAD = ∠DAC \Rightarrow AD bisects $\angle A$. ## Question-3 If a parallelogram has all its sides equal and one of its diagonal is equal to a side, show that its diagonals are in the ratio $\sqrt{3}$: 1. ## Solution: Given: ABCD is a parallelogram, where AC and BD are the diagonal meeting at O. AB = BC = AC. To Prove: BD : AC :: √3 : 1 Proof: In \triangle ABC, AB = BC = CA (given). = a (say) Hence ABC is an equilateral triangle. (Definition of equilateral triangle) AC and BD are the diagonals of parallelogram ABCD, ⇒ AC = BD (Diagonals of a parallelogram bisect each other) or AO = OC. i.e BO is the median of the equilateral ABC. Hence BO = $\frac{\sqrt{3}}{2}$ a ∴ BD = √3 a ⇒ BD : AC :: √3 a : a ⇒ BD : AC :: √3 : 1. ### Question-4 In \triangle ABC, P, Q are points on AB and AC respectively and PQ || BC. Prove that the median AD bisects PQ. ## Solution: Given: ABC is a triangle, PQ | BC; AD is the median which cuts PQ at R. To prove: AD bisects PQ at R. Proof: In ∆ ABD; PR || BD AP = AR (BPT) PB RD In A ACD, RQ II DC AR = AQ (BPT) RD QC In $\triangle APR$ and $\triangle ABD$, $\angle APR = \angle ABD$ (corresponding angles.) \angle ARP = \angle ADB (corresponding angles.) $\Delta \Delta$ APR is similar to $\Delta \Delta$ ABD (AA similarity) \therefore AP = AR = PR (corresponding sides of similar triangles are proportional)--- -(i) AB AD BD Similarly \triangle ARQ is similar to \triangle ADC $$AQ = AR = RQ ----(ii)$$ AC AD DC According to equation (i) and (ii), $$AR = PR = RQ$$ or AD bisects PQ at R (proved). #### Question-5 Prove that the line joining the midpoints of the sides of the triangle form four triangles, each of which is similar to the original triangle. ### Solution: Given: In ΔABC, D, E, F are the midpoints of AB, BC and AC respectively. To prove: ΔABC ~ ΔDEF ΔABC ~ ΔADF ΔABC ~ ΔBDE ΔABC ~ ΔEFC Proof: In ΔABC, D and F are mid points of AB and AC respectively. .. DF || BC (midpoint theorem) In Δ ABC and Δ ADF $\angle A$ is common; $\angle ADF = \angle ABC$ (corresponding angles) \triangle ABC ~ \triangle DF (AA similarity) ----(1) Similarly we can prove $\triangle ABC \sim \triangle BDE$ (AA similarity)----(2) \triangle ABC ~ \triangle EFC (AA similarity)---(3) In \triangle ABC and \triangle DEF; since D,E, F are the midpoints of AB, BC and AC respectively, DF= (1/2) × BC; DE = (1/2) × AC; EF = (1/2) × AB; (midpoint theor $$AB = BC = CA = 2$$ FF DF DF $\Delta ABC \sim \Delta EFD$ (SSS similarity)-----(4) From (1), (2), (3) and (4) Δ ABC ~ Δ DEF Δ ABC ~ Δ ADF Δ ABC ~ Δ BDE \triangle ABC \sim \triangle EFC. ### Question-6 In triangle ABC, DE||BC and AD: DB = 2:3. Determine the ratio of the area triangle ADE to the area triangle ABC. ### Solution: $$\therefore \frac{\text{Area }\triangle ADE}{\text{Area }\triangle ABC} = \frac{2^2}{5^2} = \frac{4}{25}$$ ## Question-7 One angle of a triangle is equal to one angle of another triangle and the bisectors of these equal angles divide the opposite sides in the same ratio. Prove that the triangles are similar. #### Solution: Given: ΔABC and ΔPQR $$\angle A = \angle P$$ AD and PS bisects ∠A and ∠P respectively. BD = QSDC SR To prove: ΔABC ~ ΔPQR Proof: In ΔABC and ΔPQR AD bisects ∠A \therefore AB = BD (Angle bisector theorem) ----(1) AC DC Similarly in ΔPQR , $\underline{PQ} = \underline{QS}$ (Angle bisector theorem) ---(2) PR SR But BD = QS (given) ∴ According to equation (1) and (2) $$AB = PQ \triangleright AB = AC$$ $$\angle A = \angle P$$ (given) ∴ ΔABC ~ ΔPQR (SAS similarity). ### **Question-8** The bisector of interior angle A of a triangle AB meets BC in D and the bisector of exterior angle A meets BC produced in E. Prove that $\frac{BD}{BE} = \frac{CD}{CE}$ ## Solution: Given: △ABC, AD bisects interior ∠A and AE bisects exterior ∠A meeting BC at D and BC produced at E. To prove: $$\frac{BD}{BE} = \frac{CD}{CE}$$ **Proof**: In ΔABC, AD bisects interior ∠A $$\therefore \frac{AB}{AC} = \frac{BD}{DC}$$ (Angle Bisector theorem)...(1) Similarly in DABC, AE bisects exterior $\angle A$ $$\therefore \frac{AB}{AC} = \frac{BE}{CE} \dots (2)$$ From equation (1) and (2), $$\frac{AB}{AC} = \frac{BD}{CD} = \frac{BE}{CE} \implies \frac{BD}{BE} = \frac{CD}{CE}$$ Hence Proved. ## Question-9 In a triangle ABC, XY || AC divides the triangle into two parts equal in areas. Determine $\frac{A\times}{AB}$. ### Solution: **Given:** ABC is a triangle with XY || AC divides the triangle into two parts equal in areas. To find: $\frac{A\times}{AB}$ Proof: ar ΔBXY = ar trap. XYCA (Given) \therefore ar ΔBXY = $\frac{1}{2}$ ar ΔABC In ABXY andBAC, ∠BXY = ∠BAC (Corresponding angles) ∠BYX = ∠BCA (Corresponding angles) ΔBXY ~ ΔBAC (AA similarity) $$\therefore \frac{\text{Area } \Delta B \times Y}{\text{Area } \Delta B \wedge C} = \frac{B \times^2}{AB^2} \text{ (Areas of similar triangle)}$$ $$\therefore \frac{1}{2} = \frac{B \times ^2}{AB^2}$$ $$\therefore \ \frac{1}{\sqrt{2}} = \frac{B \times AB}{AB}$$ $$\therefore AB - BX = \sqrt{2}BX - BX$$ $$\therefore AX = (\sqrt{2} - 1)BX$$ $$\frac{AX}{AB} = \frac{(\sqrt{2} - 1)BX}{\sqrt{2}BX} = \frac{\sqrt{2} - 1}{\sqrt{2}}.$$ ## Question-10 If two sides and a median bisecting the third side of a \triangle are respectively proportional to the corresponding sides and the median of another triangle, then prove that the two triangles are similar. ## Solution: **Given**: \triangle ABC and \triangle PQR where BD and QS are the medians and $\underline{AB} = \underline{BC} = \underline{BD}$ PQ QR QS To prove: ΔABC ~ ΔPQR **Construction:** Produce BD and QS to E and T respectively such that BD = DE and QS = ST. CE and TR are joined. Proof: In \triangle ADB and DCDE. AD = DC (given) ∠ADB = ∠CDE (Vertically opposite angles) BD = DE. $\Delta \Delta \Delta \Delta \Delta \Delta \Delta \Delta \simeq \Delta \Delta \Delta \Delta \simeq \Delta \Delta \simeq \Delta \Delta \simeq \Delta \Delta \simeq \Delta$ ``` Hence AB = CE and \angle ABD = \angle DEC. ``` ``` Similarly \triangle PQS \cong \triangle RST, hence PQ = TR and \angle PQS = \angle STR. Consider \triangle EBC and \triangle TQR. BD = 2BD = BE (from given and construction)-----(1) QS 2QS QT AB = CE \text{ and } PQ = RT \text{ (proved)}, \underline{AB} = \underline{CE}---(2) PQ RT AB = BC = BD (Given) ---(3) PQ QR QS From (1),(2) and (3), BE = CE = BC QT RT QR .: ΔEBC ~ ΔTQR(SSS similarity axiom). ⇒ ∠DBC = ∠SQR and ∠DEC = ∠STR --(4) (corresponding angles of similar triangles are proportional) But \angle ABD = \angle DEC and \angle PQS = \angle STR (proved)----(5) \therefore \angle ABD = \angle PQS \text{ (from (4) and (5)) ---(6)} From (5) and (6), ∠ABC = ∠PQR ----I In A ABC and A POR. AB = BC (given) PQ QR And \angle ABC = \angle PQR (from I) .: ΔABC ~ ΔPQR (SAS Similarity). ``` Two right triangles ABC and DBC are drawn on the same hypotenuse BC and on the same sides of BC. If AC and DB intersect at P, prove that AP \times PC = BP \times PD. ### Solution: **Given:** Two right triangles ABC and BDC on the same hypotenus _ and BD intersect at P. To prove: AP × PC = BP × PD Proof: In ΔABP and ΔDCP ∠A = ∠D (= 90°) (given) ∠APB = ∠DPC (vertically opposite angles) ∴ ΔABP ~ ΔDCP (AA similarity axiom) ∴ AB = BP = AP (corresponding sides of similar Δ s are proportional)(1) DC CP DP From (1) BP = AP CP DP By cross multiplication, BP × DP = AP × PC (proved). ## Question-12 If ABC is an equilateral triangle of side 2a prove that the altitude AD = 3a and $3AB^2 = 4AD^2$. ### Solution: Given: \triangle ABC is an equilateral triangle of side 2a. AD is the altitude of triangle. To Prove: AD = $a\sqrt{3}$ and $3AB^2 = 4AD^2$ Proof: In rt. Δ ADC, $$AD^2 = AC^2 - DC^2$$ = $(2a)^2 - a^2$ $$= 4a^2 - a^2$$ $$= 3a^2$$ ∴ AD = a√3 $$3AB^2 = 3(2a)^2$$ = 3(2a)² = 3 ´ 4a² = 4(a√3)2 = 4AD² ∴ 3AB² = 4AD². Two isosceles Δ s have equal vertical angles and their areas are in the ratio 9:16. Find the ratio of their corresponding heights (altitudes). ## Solution: Given: $\triangle ABC$ and $\triangle PQR$ are isosceles and $\angle A = \angle P$. AD, PS are the altitudes and $\frac{\triangle ABC}{\triangle PQR} = \frac{9}{16}$ To find: AD PS **Proof:** In \triangle ABC, \angle B = \angle C (isosceles \triangle property) Similarly in \triangle PQR, \angle Q = \angle R. $$\therefore \angle B = \angle C = \frac{180^2 - \angle A}{2}$$ Since $$\angle A = \angle P$$ PS 4 $$\angle B = \angle C = \angle Q = \angle R$$ If 2 triangles are similar then the ratio of areas will be equal to the square of the corresponding sides, ... The ratio of their corresponding heights is 3:4. The diagonals of a quadrilateral ABCD intersect each other at the point O such that $\frac{AO}{BO} = \frac{CO}{DO}$. Show that ABCD is a trapezium. ## Solution: Given: ABCD is a trapezium with AB || CD and the diagonals AC and BD intersect at 'O'. To prove: $\frac{OA}{OC} = \frac{OB}{OD}$ Proof: In the figure consider the triangle OAB and OCD ∠DOC = ∠AOB (Vertically opposite angles are equal) since AB || DC, ∠DCO = ∠OAB (Alternate angles are equal) .. By AA corollary of similar triangles. \therefore \triangle OAB \sim \triangle OCB When the two triangle are similar, the side are proportionally. $\Rightarrow \frac{OA}{OC} = \frac{OB}{OD}$ Hence proved. ### Question-15 P and Q are the points on the sides AB and AC respectively of a \triangle ABC. If AP = 2 cm, PB = 4 cm, AQ = 3 cms, QC = 6 cm, prove that BC = 3PQ. ### Solution: Given: \triangle ABC, PQ are points on AB and AC such that AP = 2 cm, BP = 4 cm, AQ = 3 cm, QC = 6 cm To prove: BC = 3PQ **Proof:** In \triangle ABC, $\frac{AP}{PB} = \frac{2}{4} = \frac{1}{2}$. $\frac{AQ}{QC} = \frac{3}{6} = \frac{1}{2}$ As $$\underline{AP} = \underline{AQ}$$ PB OC According to converse of BPT, PQ || BC In Δ APQ and Δ ABC ∠ A is Common $\Delta APQ \sim \Delta ABC$ (AAS similarity) $\frac{AP}{AB} = \frac{AQ}{CC}$ (corresponding sides of similar Δ s are proportional) But $$\frac{AP}{AB} = \frac{PQ}{BC}$$ $$PQ = 2 = 1$$ BC 6 3 : 3PQ = BC (Proved). ## Question-16 Through the midpoint of M of the side CD of a parallelogram ABCD, the line BM is drawn intersecting AC in L and AD produced in E. Prove that EL = 2BL. ### Solution: Given: ABCD is a parallelogram, M is the midpoint of CD. BM intersects AC at L and AD produced at E. To prove: EL = 2BL Proof: In \triangle BMC and \triangle EDM ∠DME = ∠ BMC (Vetically opposite angles) DM = MC (given) ∠DEM = ∠ MBC (alternate angles) $\Delta BMC \cong \Delta EDM$ (ASA congruence) \therefore DE = BC (c.p.c.t) But BC = AD (opposite sides of parallelogram ABCD) \therefore AD = DE \Rightarrow AE = 2AD = 2BC In \triangle AEL and \triangle CBL \angle ALE = \angle BLC (Vertically opposite angles) \angle AEL = \angle LBC (alternate angles) $\Delta \Delta AEL \sim \Delta CBL$ (AA similarity axiom) $$\Rightarrow \frac{AE}{BC} = \frac{AL}{LC} = \frac{EL}{BL}$$ $$\Rightarrow \frac{EL}{BL} = \frac{AE}{BC}$$ $$\Rightarrow \frac{EL}{BL} = \frac{AD - DE}{BC}$$ $$\Rightarrow \frac{EL}{BL} = \frac{BC + BC}{BC}$$ $$\Rightarrow \frac{EL}{BL} = \frac{2BC}{BC}$$ $$\Rightarrow \frac{EL}{BL} = 2$$ ## Question-17 The side BC of a triangle ABC is bisected at D; O is any point in AD. BO, CO produced meet AC, AB in E,F respectively, and AD is produced to X so that D is the mid point of OX. Prove that AO: AX = AF: AB and show that EF is parallel to BC. ## Solution: Given: The side BC of a triangle ABC is bisected at D; O is any point in AD. BO, CO produced meet AC, AB in E, F respectively, and AD is produced to X so that D is the mid point of OX. To Prove : AO : AX = AF : AB and show that EF is parallel to BC. Construction: Join BX and CX. Proof: In quadrilateral BOCX, BD = DC and DO = DX (given) : BOCX is a parallelogram (When the diagonals of a quadrilateral bisect each other, then the quad, is a parallelogram) ∴ BX || CO (Definition of a parallelogram) or BX || FO. In \triangle ABX, BX || FO(proved). \therefore AO : AX = AF : AB (using B.P.T) -----(i) Similarly, AO : AX = AE : AC ----(ii) From (i) and (ii), AF: AB = AE: AC By corollary to B.P.T, EF is parallel to BC. ## Question-18 ABC is a triangle in which \angle BAC = 90° and DEFG is a square, prove that DE² = BD × EC. ### Solution: Given: ABC is a triangle in which \(\triangle \) BAC = 90° and DEFG is a square. To prove: $DE^2 = BD \times EC$. Proof: In \triangle AGF and \triangle DBG, ∠AGF = ∠GBD (corresponding angles) \angle GAF = \angle BDG (each = 90°) .. ΔAGF ~ ΔDBG. -----(i) Similarly, ΔAFG ~ ΔECF (AA Similarity)-----(ii) From (i) and (ii), $\triangle DBG \sim \triangle ECF$. $$\frac{BD}{EF} = \frac{BG}{FC} = \frac{DG}{EC}$$ Also DEFG is a square \Rightarrow DE = EF = FG = DG -----(iv) From (iii) and (iv), $DE^2 = BD \times EC$. ## Question-19 In fig. DE \parallel BC. If AD = x, DB = x - 2, AE = x + 2 and EC = x - 1, find the value x. ### Solution: Given: ABC is a triangle, DE || BC, AD = x, DB = x - 2, AE = x + 2 and EC = x - 1. To find: x In \triangle ABC, we have DE || BC Therefore [By Thale's theorem] $$\frac{AD}{DB} = \frac{AE}{EC}$$ $$AD \times EC = AE \times DB$$ $$x(x-1) = (x-2)(x+2)$$ $x^2 - x = x^2 - 4$ $x = 4$ ## Question-20 In a \triangle ABC, D and E are points on the sides AB and AC respectively such that DE || BC. If AD = 4 cm, AE = 8 cm, DB = x - 4 and EC = 3x - 19, find x. ## Solution: Given: In \triangle ABC, D and E are points on the sides AB and AC respectively such that DE || BC. AD = 4 cm, AE = 8 cm, DB = x - 4 and EC = 3x - 19. To find: x. In \triangle ABC, we have DE || BC Therefore $\frac{AD}{DB} = \frac{AE}{EC}$ [By Thale's theorem] $$\frac{4}{x-4} = \frac{8}{3x-19}$$ $$4(3x - 19) = 8(x - 4)$$ $12x - 76 = 8x - 32$ $4x = 44$ $$x = 11$$ ## Question-21 In a \triangle ABC, AD is the bisector of \angle A, meeting side BC at D. If AC = 4.2 cm, DC = 6 cm, BC = 10 cm, find AB. ## Solution: Given: In a \triangle ABC, AD is the bisector of \angle A, meeting side BC at D. AC = 4.2 cm, DC = 6 cm and BC = 10 cm. To find: AB. In Δ ABC, $\frac{AB}{AC} = \frac{BD}{DC}$ [By internal bisector theorem] $$AB = 4 \times 4.2/6 = 2.8 \text{ cm}$$ ### Question-22 In \triangle ABC, \angle B = 90° and D is the mid-point of BC. Prove that AC² = AD² + 3CD². #### Solution: Given: In \triangle ABC, \angle B = 90° and D is the mid-point of BC. To Prove: $AC^2 = AD^2 + 3CD^2$ Proof: In \triangle ABD, $$AD^2 = AB^2 + BD^2$$ $$AB^2 = AD^2 - BD^2$$(i) In Δ ABC, $$AC^2 = AB^2 + BC^2$$ $$AB^2 = AC^2 - BC^2$$(ii) Equating (i) and (ii) $$AD^{2} - BD^{2} = AC^{2} - BC^{2}$$ $$AD^2 - BD^2 = AC^2 - (BD + DC)^2$$ $$AD^{2} - BD^{2} = AC^{2} - BD^{2} - DC^{2} - 2BD \times DC$$ $$AD^2 = AC^2 - DC^2 - 2DC^2$$ (DC = BD) $$AD^2 = AC^2 - 3DC^2$$ ABC is a triangle in which AB = AC and D is a point on the side AC such that $BC^2 = AC \times CD$. Prove that BD = BC. ### Solution: Given: A \triangle ABC in which AB = AC. D is a point on AC such that BC² = AC × CD. To prove: BD = BC **Proof:** Since $BC^2 = AC \times CD$ Therefore $BC \times BC = AC \times CD$ AC/BC = BC/CD....(i) Also ∠ACB = ∠BCD Since $\triangle ABC \sim \triangle BDC$ [By SAS Axiom of similar triangles] AB/AC = BD/BC(ii) But AB = AC (Given)(iii) From (i), (ii) and (iii) we get BD = BC. ## Question-24 The diagonal BD of a parallelogram ABCD intersects the segment AE at the point F, where E is any point on the side BC. Prove that $DF \times EF = FB \times FA$. ## Solution: **Given:** The diagonal BD of parallelogram ABCD intersects the segment AE at F, where E is any point on BC. To prove: DF × EF = FB × FA **Proof**: In triangles AFD and BFE, \angle FAD = \angle FEB (Alternate angles) ∠AFD = ∠BFE (Vertically opposite angles) Therefore $\triangle ADF \sim \triangle BFE$ (AA similarity) $\frac{DF}{FA} = \frac{FB}{EF}$ Hence DF × EF = FB × FA ### Question-25 ABC is a triangle, right-angled at C and AC = $\sqrt{3}$ BC. Prove that \angle ABC = 60°. ## Solution: Given: $\triangle ABC$ is right angled at C and $AC = \sqrt{3}BC$. To prove: \angle ABC = 60°. Proof: Let D be the midpoint of AB. Join CD. Now, $AB^2 = BC^2 + AC^2 = BC^2 + (\sqrt{3}BC)^2 = 4BC^2$ Therefore AB = 2BC. Now, BD = $\frac{1}{2}$ AB = $\frac{1}{2}$ (2BC) = BC. But, D being the midpoint of hypotenuse AB, it is equidistant from all the three vertices. Therefore CD = BD = DA or CD = $\frac{1}{2}$ AB = BC. Thus, BC = BD = CD, i.e., $\triangle BCD$ is a equilateral triangle. Hence, ∠ABC = 60°. ### Question-27 Let ABC be a triangle, right-angled at C. If D is the mid-point of BC, prove that $AB^2 = 4AD^2 - 3AC^2$. ## Solution: Given: ABC be a triangle, right-angled at C and D is the mid-point of BC. **To Prove:** $AB^2 = 4AD^2 - 3AC^2$. Proof: From right triangle ACB, we have, $$AB^{2} = AC^{2} + BC^{2}$$ $$= AC^{2} + (2CD)^{2} = AC^{2} + 4CD^{2}$$ [Since BC = 2CD] $$= AC^{2} + 4(AD^{2} - AC^{2})$$ [From right \triangle ACD] $$= 4AD^{2} - 3AC^{2}.$$ ## Question-28 In the given figure, points D and E trisect BC and $\angle B = 90^{\circ}$. Prove that $8AE^2 = 3AC^2 + 5AD^2$. ### Solution: Given: In \triangle ABC, points D and E trisect on BC and \angle B = 90°. To Prove: $8AE^2 = 3AC^2 + 5AD^2$. **Proof:** Let ABC be the triangle in which $h \angle B = 90^{\circ}$. Let the points D and E trisect BC. Join AD and AE. Then, $$AC^2 = AB^2 + BC^2$$ $$3AC^2 = 3AB^2 + 3BC^2$$(i) $$AD^2 = AB^2 + BD^2$$ $5AD^2 = 5AB^2 + 5BD^2$(iii) Therefore $$3AC^2 + 5AD^2 = 8AB^2 + 3BC^2 + 5BD^2$$ $= 8AB^2 + 3.\left(\frac{3}{2}BE\right)^2 + 5\left(\frac{1}{2}BE\right)^2$ $= 8AB^2 + \left(\frac{27}{4} + \frac{5}{4}\right)BE^2$ $= 8AB^2 + 8BE^2$ $= 8(AB^2 + BE^2)$ $= 8AE^2$. In fig., ABC is a triangle in which AB = AC. D and E are points on the sides AB and AC respectively such that AD = AE. Show that the points B, C, E and D are concyclic. ## Solution: Given: In \triangle ABC, AB = AC. D and E are points on the sides AB and AC respectively such that AD = AE. To Prove: Points B, C, E and D are concyclic. Proof: In order to prove that the points B, C, E and D are concyclic, it is sufficient to show that ∠ABC + ∠CED = 180° and $\angle ACB + \angle BDE = 180^{\circ}$. In \triangle ABC, we have AB = AC and AD = AE AB - AD = AC - AE DB = EC Thus, we have AD = AE and DB = EC. $\frac{AD}{DB} = \frac{AE}{EC}$ DE || BC ∠ABC = ∠ADE $\angle ABC + \angle BDE = \angle ADE + \angle BDE$ ∠ABC + ∠BDE = 180° ∠ACB + ∠BDE = 180° ∠ACB] Again DEIIBC ∠ACB = ∠AED ∠ACB + ∠CED = ∠AED + ∠CED [Adding ∠CED on both sides] ∠ACB + ∠CED = 180° ∠ABC + ∠CED = 180° [Since \angle ABC = \angle ACB] [By the converse of Thale's Theorem] [adding ∠BDE on both sides] [Since AB = AC Therefore ∠ABC = [Corresponding angles] Therefore BDEC is a cyclic quadrilateral. Hence, B, C, E and D are concyclic points. In fig, \angle B < 90° and segment AD ^ BC, show that $b^2 = h^2 + a^2 + x^2 - 2ax$ ### Solution: Given: In \triangle ABC, \angle B < 90° and segment AD \bot BC. To prove: $b^2 = h^2 + a^2 + x^2 - 2ax$ Proof: $$b^2 = h^2 + (a - x)^2$$ $$b^2 = h^2 + a^2 + x^2 - 2ax$$. ## Question-31 In the given figure, ABCD is a parallelogram P is a point on BC, such that BP: PC = 1:2. DP produced meets AB produced at Q. Given area of triangle CPQ = 20 m^2 , calculate the area of triangle DCP. ### Solution: Given: ABCD is a parallelogram P is a point on BC, such that BP : PC = 1 : 2. DP produced meets AB produced at Q. Area of triangle CPQ = 20 m^2 . To Find: Area of triangle DCP. Construction: Join DB. A B C \angle BPQ = \angle DPC (Vertically opposite angles) ``` ∠ BQP = ∠ PDC (alternate angles, BQ || DC, DQ meets them) ∴ \triangle BPQ ~ \triangle CPD (AA similarity) BP/CP = ½ (Given) areaxCPD = (\frac{BP}{CP})^2 = \frac{1}{4} ∴ Area D CPD = Area D BPQ areaxCPD = (\frac{BP}{CP})^2 = \frac{1}{2} and area \triangleCPQ = 20 cm² (Given) Area \triangleBPQ = 10 cm² Area \triangleCPD = 40 cm² \frac{Area \triangle DBC}{Area \triangle DPC} = \frac{3}{2} (Proportional to bases BC and PC) \frac{Area \triangle DBC}{ADC} = \frac{3}{2} \therefore Area \triangle DBC = 40 \times 3/2 = 60 \text{ cm}^2. ```