Chapter: 1. RELATION

CLASS24

Exercise: 1A

Question: 1

Solution:

dom $(R) = \{-1, 1, -2, 2\}$ and range $(R) = \{1, 4\}$

Question: 2

Solution:

range $(R) = \{827\}$

Question: 3

Solution:

(i) $R = \{(2,8),(3,27),(5,125),(7,343)\}$

(ii) dom (R) = $\{2, 3, 5, 7\}$

(iii) range (R) = $\{8, 27, 125, 343\}$

Question: 4

Solution:

 ${3, 2, 1}$

Question: 5

Solution:

dom $(R) = \{3, 6, 9\}$ and range $(R) = \{3, 2, 1\}$

Question: 6

Solution:

dom $(R) = \{-2, -1, 0, 1, 2\}$ and range $(R) = \{3, 2, 1, 0\}$

Question: 7

Let
$$(R) = \left\{ \frac{1}{2}, \frac{1}{3}, \frac{1}{4} \right\}$$

Question: 8

Solution:

dom $(R) = \{1, 2, 3\}$ and range $(R) = \{6, 7, 8\}$

Question: 9

Solution:

Let $R = \{(A, B) : A \subset B\}$, i.e., A is a proper subset of B, be a relation defined on S.

Now,

Any set is a subset of itself, but not a proper subset.

 \Rightarrow (A,A) \notin R \forall A \in S

⇒ R is not reflexive.

Let (A,B) \in R \forall A, B \in S

⇒ A is a proper subset of B

⇒ all elements of A are in B, but B contains at least one element that is not in A.

⇒ B cannot be a proper subset of A

CLASS24

 \Rightarrow (B,A) \notin R

For e.g. , if $B = \{1,2,5\}$ then $A = \{1,5\}$ is a proper subset of B . we observe that B is not a proper subset of A.

⇒ R is not symmetric

Let $(A,B) \in R$ and $(B,C) \in R \forall A, B,C \in S$

- ⇒ A is a proper subset of B and B is a proper subset of C
- ⇒ A is a proper subset of C
- \Rightarrow (A,C) \in R

For e.g., if $B = \{1,2,5\}$ then $A = \{1,5\}$ is a proper subset of B.

And if $C = \{1,2,5,7\}$ then $B = \{1,2,5\}$ is a proper subset of C.

We observe that $A = \{1,5\}$ is a proper subset of C also.

⇒ R is transitive.

Thus, R is transitive but not reflexive and not symmetric.

Question: 10

Solution:

In order to show R is an equivalence relation, we need to show R is Reflexive, Symmetric and Transitive.

Given that, A be the set of all points in a plane and O be the origin. Then, $R = \{(P, Q) : P, Q \in A \text{ and } OP = OQ)\}$

Now,

R is Reflexive if $(P,P) \in R \forall P \in A$

 $\forall P \in A$, we have

OP=OP

 \Rightarrow (P,P) \in R

Thus, R is reflexive.

R is Symmetric if $(P,Q) \in R \Rightarrow (Q,P) \in R \forall P,Q \in A$

Let P, Q ∈ A such that,

 $(P,Q) \in R$

 \Rightarrow OP = OQ

 \Rightarrow OQ = OP

 \Rightarrow (Q,P) \in R

CLASS24

Thus, R is symmetric.

R is Transitive if $(P,Q) \in R$ and $(Q,S) \in R \Rightarrow (P,S) \in R \ \forall P,Q,S \in A$

Let $(P,Q) \in R$ and $(Q,S) \in R \forall P, Q, S \in A$

 \Rightarrow OP = OQ and OQ = OS

 \Rightarrow OP = OS

 \Rightarrow (P,S) \in R

Thus, R is transitive.

Since R is reflexive, symmetric and transitive it is an equivalence relation on A.

Question: 11

Solution:

Let $R = \{(a, b) : a \le b\}$ be a relation defined on S.

Now,

We observe that any element $x \in S$ is less than or equal to itself.

 \Rightarrow (x,x) \in R \forall x \in S

⇒ R is reflexive.

Let $(x,y) \in R \ \forall \ x, y \in S$

 \Rightarrow x is less than or equal to y

But y cannot be less than or equal to x if x is less than or equal to y.

 \Rightarrow (y,x) \notin R

For e.g., we observe that $(2,5) \in R$ i.e. 2 < 5 but 5 is not less than or equal to $2 \Rightarrow (5,2) \notin R$

⇒ R is not symmetric

Let $(x,y) \in R$ and $(y,z) \in R \ \forall \ x, y, z \in S$

 \Rightarrow x \leq y and y \leq z

 $\Rightarrow x \leq z$

 \Rightarrow (x,z) \in R

For e.g., we observe that

 $(4,5) \in \mathbb{R} \Rightarrow 4 \le 5 \text{ and } (5,6) \in \mathbb{R} \Rightarrow 5 \le 6$

And we know that $4 \le 6$... $(4,6) \in R$

 \Rightarrow R is transitive.

Thus, R is reflexive and transitive but not symmetric.

Question: 12

Solution:

Given that.

 $A = \{1, 2, 3, 4, 5, 6\}$ and $R = \{(a, b) : a, b \in A \text{ and } b = a + 1\}.$

 \therefore R = {(1,2),(2,3),(3,4),(4,5),(5,6)}

Now,

CLASS24

R is Reflexive if $(a,a) \in R \ \forall \ a \in A$

Since, (1,1),(2,2),(3,3),(4,4),(5,5), $(6,6) \notin R$

Thus, R is not reflexive.

R is Symmetric if $(a,b) \in R \Rightarrow (b,a) \in R \forall a,b \in A$

We observe that $(1,2) \in R$ but $(2,1) \notin R$.

Thus, R is not symmetric.

R is Transitive if $(a,b) \in R$ and $(b,c) \in R \Rightarrow (a,c) \in R \ \forall \ a,b,c \in A$

We observe that $(1,2) \in R$ and $(2,3) \in R$ but $(1,3) \notin R$

Thus, R is not transitive.

Exercise: 1B

Question: 1

Solution:

Relation: Let A and B be two sets. Then a relation R from set A to set B is a subset of A x B. Thus, R is a relation to A to B \Leftrightarrow R \subseteq A x B.

If R is a relation from a non-void set B and if $(a,b) \in R$, then we write a R b which is read as 'a is related to b by the relation R'. if $(a,b) \notin R$, then we write a R b, and we say that a is not related to b by the relation R.

Domain: Let R be a relation from a set A to a set B. Then the set of all first components or coordinates of the ordered pairs belonging to R is called the domain of R.

Thus, domain of $R = \{a : (a,b) \in R\}$. The domain of $R \subseteq A$.

Range: let R be a relation from a set A to a set B. then the set of all second component or coordinates of the ordered pairs belonging to R is called the range of R.

Example 1: $R = \{(-1, 1), (1, 1), (-2, 4), (2, 4)\}.$

dom $(R) = \{-1, 1, -2, 2\}$ and range $(R) = \{1, 4\}$

Example 2: $R = \{(a, b): a, b \in N \text{ and } a + 3b = 12\}$

 $dom(R) = \{3, 6, 9\}$ and range(R) = $\{3, 2, 1\}$

Question: 2

Solution:

Let $R = \{(\Delta_1, \Delta_2) : \Delta_1 \sim \Delta_2\}$ be a relation defined on A.

Now,

R is Reflexive if $(\Delta, \Delta) \in R \forall \Delta \in A$

We observe that for each $\Delta \in A$ we have,

 $\Delta \sim \Delta$ since, every triangle is similar to itself.

 \Rightarrow (Δ , Δ) \in R \forall Δ \in A

⇒ R is reflexive.

<u>R is Symmetric if $(\Delta_1, \Delta_2) \in \mathbb{R} \Rightarrow (\Delta_2, \Delta_1) \in \mathbb{R} \ \forall \ \Delta_1, \Delta_2 \in \mathbb{A}$ </u>

Let $(\Delta_1, \Delta_2) \in R \ \forall \ \Delta_1, \Delta_2 \in A$

 $\Rightarrow \Delta_1 \sim \Delta_2$

 $\Rightarrow \Delta_2 \sim \Delta_1$

 $\Rightarrow (\Delta_2, \Delta_1) \in R$

⇒ R is symmetric

<u>R is Transitive if $(\Delta_1, \Delta_2) \in R$ and $(\Delta_2, \Delta_3) \in R \Rightarrow (\Delta_1, \Delta_3) \in R \ \forall \ \Delta_1, \Delta_2, \ \Delta_3 \in A$ </u>

CLASS24

Let $(\Delta_1, \Delta_2) \in R$ and $((\Delta_2, \Delta_3) \in R \ \forall \ \Delta_1, \Delta_2, \Delta_3 \in A$

 $\Rightarrow \Delta_1 \sim \Delta_2$ and $\Delta_2 \sim \Delta_3$

 $\Rightarrow \Delta_1 \sim \Delta_3$

 $\Rightarrow (\Delta_1, \Delta_3) \in R$

 \Rightarrow R is transitive.

Since R is reflexive, symmetric and transitive, it is an equivalence relation on A.

Question: 3

Solution:

In order to show R is an equivalence relation, we need to show R is Reflexive, Symmetric and Transitive.

Given that, \forall a, b \in Z, R = {(a, b) : (a + b) is even }.

Now,

R is Reflexive if $(a,a) \in R \forall a \in Z$

For any $a \in A$, we have

a+a = 2a, which is even.

 \Rightarrow (a,a) \in R

Thus, R is reflexive.

R is Symmetric if $(a,b) \in R \Rightarrow (b,a) \in R \forall a,b \in Z$

 $(a,b) \in R$

⇒ a+b is even.

⇒ b+a is even.

 \Rightarrow (b,a) \in R

Thus, R is symmetric.

R is Transitive if $(a,b) \in R$ and $(b,c) \in R \Rightarrow (a,c) \in R \forall a,b,c \in Z$

Let $(a,b) \in R$ and $(b,c) \in R \ \forall \ a,b,c \in Z$

 \Rightarrow a+b = 2P and b+c = 2Q

Adding both, we get

a+c+2b=2(P+Q)

 \Rightarrow a+c = 2(P+Q)-2b

⇒ a+c is an even number

 \Rightarrow (a, c) \in R

Thus, R is transitive on Z.

Since R is reflexive, symmetric and transitive it is an equivalence relation on Z.

Question: 4

Solution:

CLASS24

In order to show R is an equivalence relation, we need to show R is Reflexive, Symmetric and Transitive.

Given that, \forall a, b \in Z, aRb if and only if a – b is divisible by 5.

Now,

R is Reflexive if $(a,a) \in R \ \forall \ a \in Z$

 $aRa \Rightarrow (a-a)$ is divisible by 5.

 $a-a = 0 = 0 \times 5$ [since 0 is multiple of 5 it is divisible by 5]

 \Rightarrow a-a is divisible by 5

 \Rightarrow (a,a) \in R

Thus, R is reflexive on Z.

R is Symmetric if $(a,b) \in R \Rightarrow (b,a) \in R \forall a,b \in Z$

 $(a,b) \in R \Rightarrow (a-b)$ is divisible by 5

 \Rightarrow (a-b) = 5z for some z \in Z

 \Rightarrow -(b-a) = 5z

 \Rightarrow b-a = 5(-z) [: $z \in Z \Rightarrow -z \in Z$]

⇒ (b-a) is divisible by 5

 \Rightarrow (b,a) \in R

Thus, R is symmetric on Z.

R is Transitive if $(a,b) \in R$ and $(b,c) \in R \Rightarrow (a,c) \in R \lor a,b,c \in Z$

 $(a,b) \in R \Rightarrow (a-b)$ is divisible by 5

 \Rightarrow a-b = 5z₁ for some z₁ \in Z

 $(b,c) \in R \Rightarrow (b-c)$ is divisible by 5

 \Rightarrow b-c = $5z_2$ for some $z_2 \in Z$

Now,

 $a-b = 5z_1$ and $b-c = 5z_2$

 \Rightarrow (a-b) + (b-c) = $5z_1 + 5z_2$

 \Rightarrow a-c = 5(z₁ + z₂) = 5z₃ where z₁ + z₂ = z₃

 \Rightarrow a-c = 5z₃ [: z₁,z₂ \in Z \Rightarrow z₃ \in Z]

 \Rightarrow (a-c) is divisible by 5.

 \Rightarrow (a, c) \in R

Thus, R is transitive on Z.

Since R is reflexive, symmetric and transitive it is an equivalence relation on Z.

Question: 5

Solution:

In order to show R is an equivalence relation we need to show R is Reflexive, Symmetric and

Transitive.

Given that, \forall a, b \in A, R = {(a, b) : |a - b| is even}.

CLASS24

Now,

R is Reflexive if $(a,a) \in R \ \forall \ a \in A$

For any $a \in A$, we have

|a-a| = 0, which is even.

 \Rightarrow (a,a) \in R

Thus, R is reflexive.

R is Symmetric if $(a,b) \in R \Rightarrow (b,a) \in R \forall a,b \in A$

 $(a,b) \in R$

⇒ |a-b| is even.

⇒ |b-a| is even.

 \Rightarrow (b,a) \in R

Thus, R is symmetric.

R is Transitive if $(a,b) \in R$ and $(b,c) \in R \Rightarrow (a,c) \in R \lor a,b,c \in A$

Let $(a,b) \in R$ and $(b,c) \in R \forall a, b,c \in A$

 \Rightarrow |a - b| is even and |b - c| is even

⇒ (a and b both are even or both odd) and (b and c both are even or both odd)

Now two cases arise:

Case 1: when b is even

Let $(a,b) \in R$ and $(b,c) \in R$

⇒ |a - b| is even and |b - c| is even

⇒ a is even and c is even [∵ b is even]

 \Rightarrow |a - c| is even [: difference of any two even natural numbers is even]

 \Rightarrow (a, c) \in R

Case 2: when b is odd

Let $(a,b) \in R$ and $(b,c) \in R$

⇒ |a - b| is even and |b - c| is even

⇒ a is odd and c is odd [∵ b is odd]

⇒ |a - c| is even [∵ difference of any two odd

natural numbers is even]

 \Rightarrow (a, c) \in R

Thus, R is transitive on Z.

Since R is reflexive, symmetric and transitive it is an equivalence relation on Z.

Question: 6

Solution:

In order to show R is an equivalence relation we need to show R is Reflexive, Symmetric and Transitive.

Given that, R be the relation in N ×N defined by (a, b) R (c, d) if a + d = b + c for (a, b), (c, d) in

R is Reflexive if (a, b) R (a, b) for (a, b) in N ×N

Let (a,b) R (a,b)

 \Rightarrow a+b = b+a

which is true since addition is commutative on N.

⇒ R is reflexive.

R is Symmetric if (a,b) R (c,d) \Rightarrow (c,d) R (a,b) for (a, b), (c, d) in N \times N

Let (a,b) R (c,d)

- \Rightarrow a+d = b+c
- \Rightarrow b+c = a+d
- \Rightarrow c+b = d+a [since addition is commutative on N]
- \Rightarrow (c,d) R (a,b)
- \Rightarrow R is symmetric.

R is Transitive if (a,b) R (c,d) and (c,d) R (e,f) \Rightarrow (a,b) R (e,f) for (a, b), (c, d), (e,f) in N \times N

Let (a,b) R (c,d) and (c,d) R (e,f)

 \Rightarrow a+d = b+c and c+f = d+e

$$\Rightarrow$$
 (a+d) - (d+e) = (b+c) - (c+f)

 \Rightarrow a-e= b-f

 \Rightarrow a+f = b+e

 \Rightarrow (a,b) R (e,f)

⇒ R is transitive.

Hence, R is an equivalence relation.

Question: 7

Solution:

In order to show R is an equivalence relation we need to show R is Reflexive, Symmetric and Transitive.

Given that, \forall a, b \in S, R = {(a, b) : a = \pm b }

Now,

R is Reflexive if $(a,a) \in R \ \forall \ a \in S$

For any $a \in S$, we have

 $a = \pm a$

 \Rightarrow (a,a) \in R

Thus, R is reflexive.

R is Symmetric if (a,b) $\in R \Rightarrow (b,a) \in R \forall a,b \in S$

 $(a,b) \in R$

 \Rightarrow a = \pm b

 \Rightarrow b = \pm a

 \Rightarrow (b,a) \in R

Thus, R is symmetric.

Let $(a,b) \in R$ and $(b,c) \in R \ \forall \ a,b,c \in S$

 \Rightarrow a = \pm b and b = \pm c

 \Rightarrow a = \pm c

 \Rightarrow (a, c) \in R

Thus, R is transitive.

Hence, R is an equivalence relation.

Question: 8

Solution:

Given that, $\forall A, B \in S$, $R = \{(A, B) : d(A, B) < 2 \text{ units}\}.$

Now,

R is Reflexive if $(A,A) \in R \vee A \in S$

For any $A \in S$, we have

d(A,A) = 0, which is less than 2 units

 \Rightarrow (A,A) \in R

Thus, R is reflexive.

R is Symmetric if (A, B) \subseteq R \Rightarrow (B,A) \subseteq R \forall A,B \subseteq S

 $(A, B) \in R$

 \Rightarrow d(A, B) < 2 units

 \Rightarrow d(B, A) < 2 units

 \Rightarrow (B,A) \in R

Thus, R is symmetric.

R is Transitive if $(A, B) \in R$ and $(B,C) \in R \Rightarrow (A,C) \in R \forall A,B,C \in S$

Consider points A(0,0),B(1.5,0) and C(3.2,0).

d(A,B)=1.5 units < 2 units and d(B,C)=1.7 units < 2 units

d(A,C) = 3.2 < 2

 \Rightarrow (A, B) \in R and (B,C) \in R \Rightarrow (A,C) \notin R

Thus, R is not transitive.

Thus, R is reflexive, symmetric but not transitive.

Question: 9

Solution:

Given that, $\forall a, b \in S$, $R = \{(a, b) : a^2 + b^2 = 1\}$

Now.

R is Reflexive if (a,a) $\in R \ \forall \ a \in S$

For any a ∈ S, we have

$$a^2+a^2=2 \ a^2\neq 1$$

Thus, R is not reflexive.

CLASS24

R is Symmetric if $(a,b) \in R \Rightarrow (b,a) \in R \forall a,b \in S$

$$(a,b) \in R$$

$$\Rightarrow$$
 a² + b² = 1

$$\Rightarrow$$
 b² + a² = 1

$$\Rightarrow$$
 (b,a) \in R

Thus, R is symmetric.

R is Transitive if $(a,b) \in R$ and $(b,c) \in R \Rightarrow (a,c) \in R \forall a,b,c \in S$

Let
$$(a,b) \in R$$
 and $(b,c) \in R \forall a,b,c \in S$

$$\Rightarrow$$
 a² + b² = 1 and b² + c² = 1

Adding both, we get

$$a^2 + c^2 + 2b^2 = 2$$

$$\Rightarrow a^2 + c^2 = 2 - 2b^2 \neq 1$$

Thus, R is not transitive.

Thus, R is symmetric but neither reflexive nor transitive.

Question: 10

Solution:

We have, $R = \{(a, b) : a = b^2\}$ relation defined on N.

Now,

We observe that, any element $a \in N$ cannot be equal to its square except 1.

$$\Rightarrow$$
 (a,a) \notin R \forall a \in N

For e.g.
$$(2,2) \notin R : 2 \neq 2^2$$

⇒ R is not reflexive.

Let
$$(a,b) \in R \ \forall \ a,b \in N$$

$$\Rightarrow$$
 a = b²

But b cannot be equal to square of a if a is equal to square of b.

For e.g., we observe that $(4,2) \in \mathbb{R}$ i.e $4 = 2^2$ but $2 \neq 4^2 \Rightarrow (2,4) \notin \mathbb{R}$

⇒ R is not symmetric

Let $(a,b) \in R$ and $(b,c) \in R \ \forall \ a, \ b,c \in N$

$$\Rightarrow$$
 a = b² and b = c²

$$\Rightarrow a \neq c^2$$

For e.g., we observe that

$$(16,4) \in \mathbb{R} \Rightarrow 16 = 4^2 \text{ and } (4,2) \in \mathbb{R} \Rightarrow 4 = 2^2$$

But 16 ≠ 2²

⇒ (16,2) ∉ R

 \Rightarrow R is not transitive.

Thus, R is neither reflexive nor symmetric nor transitive.

Question: 11

Solution:

We have, $R = \{(a, b) : a > b\}$ relation defined on N.

Now,

We observe that, any element $a \in N$ cannot be greater than itself.

CLASS24

 \Rightarrow (a,a) \notin R \forall a \in N

⇒ R is not reflexive.

Let $(a,b) \in R \ \forall \ a,b \in N$

⇒ a is greater than b

But b cannot be greater than a if a is greater than b.

⇒ (b,a) ∉ R

For e.g., we observe that $(5,2) \in R$ i.e 5 > 2 but $2 \not > 5 \Rightarrow (2,5) \notin R$

⇒ R is not symmetric

Let $(a,b) \in R$ and $(b,c) \in R \forall a, b,c \in N$

 \Rightarrow a > b and b > c

 $\Rightarrow a > c$

 \Rightarrow (a,c) \in R

For e.g., we observe that

 $(5,4) \in R \Rightarrow 5 > 4 \text{ and } (4,3) \in R \Rightarrow 4 > 3$

And we know that 5 > 3 \therefore $(5,3) \in \mathbb{R}$

⇒ R is transitive.

Thus, R is transitive but not reflexive not symmetric.

Question: 12

Solution:

Given that, $A = \{1, 2, 3\}$ and $R = \{1, 1\}$, (2, 2), (3, 3), (1, 2), (2, 3).

Now,

R is reflexive : $(1,1),(2,2),(3,3) \in R$

R is not symmetric : $(1,2),(2,3) \in R$ but $(2,1),(3,2) \notin R$

R is not transitive $:: (1,2) \in R$ and $(2,3) \in R \Rightarrow (1,3) \notin R$

Thus, R is reflexive but neither symmetric nor transitive.

Question: 13

Solution:

Given that, $A = \{1, 2, 3\}$ and $R = \{1, 1\}, (2, 2), (3, 3), (4, 4), (1, 2), (1, 3), (3, 2)\}$

Now,

R is reflexive : $(1,1),(2,2),(3,3),(4,4) \in R$

R is not symmetric :: $(1,2),(1,3),(3,2) \in R$ but $(2,1),(3,1),(2,3) \notin R$

R is transitive $(1,3) \in \mathbb{R}$ and $(3,2) \in \mathbb{R} \Rightarrow (1,2) \in \mathbb{R}$

Thus, R is reflexive and transitive but not symmetric.

Exercise: OBJECTIVE QUESTIONS

CLASS24

Question: 1

Solution:

Given set $A = \{1, 2, 3\}$

And $R = \{(1, 1), (2, 2), (3, 3), (1, 3), (3, 2), (1, 2)\}$

Formula

For a relation R in set A

Reflexive

The relation is reflexive if $(a, a) \in R$ for every $a \in A$

Symmetric

The relation is Symmetric if $(a, b) \in R$, then $(b, a) \in R$

Transitive

Relation is Transitive if $(a, b) \in R \& (b, c) \in R$, then $(a, c) \in R$

Equivalence

If the relation is reflexive, symmetric and transitive, it is an equivalence relation.

Check for reflexive

Since, $(1,1) \in \mathbb{R}$, $(2,2) \in \mathbb{R}$, $(3,3) \in \mathbb{R}$

Therefore, R is reflexive (1)

Check for symmetric

Since $(1,3) \in R$ but $(3,1) \notin R$

Therefore, R is not symmetric (2)

Check for transitive

Here, $(1,3) \in R$ and $(3,2) \in R$ and $(1,2) \in R$

Therefore, R is transitive (3)

Now, according to the equations (1), (2), (3)

Correct option will be (B)

Question: 2

Solution:

Given set $A = \{a, b, c\}$

And $R = \{(a, a), (a, b), (b, a)\}$

<u>Formula</u>

For a relation R in set A

Reflexive

CLASS24

The relation is reflexive if $(a, a) \in R$ for every $a \in A$

Symmetric

The relation is Symmetric if $(a, b) \in R$, then $(b, a) \in R$

Transitive

Relation is Transitive if $(a, b) \in R \& (b, c) \in R$, then $(a, c) \in R$

Equivalence

If the relation is reflexive , symmetric and transitive , it is an equivalence relation.

Check for reflexive

Since, (b,b) $\notin R$ and (c,c) $\notin R$

Therefore, R is not reflexive (1)

Check for symmetric

Since, $(a,b) \in R$ and $(b,a) \in R$

Therefore, R is symmetric (2)

Check for transitive

Here, $(a,b) \in R$ and $(b,a) \in R$ and $(a,a) \in R$

Therefore, R is transitive (3)

Now, according to the equations (1), (2), (3)

Correct option will be (C)

Question: 3

Solution:

Given set $A = \{1, 2, 3\}$

And $R = \{(1, 1), (2, 2), (3, 3), (1, 2), (2, 1), (2, 3), (3, 2)\}$

<u>Formula</u>

For a relation R in set A

Reflexive

The relation is reflexive if $(a, a) \in R$ for every $a \in A$

Symmetric

The relation is Symmetric if $(a, b) \in R$, then $(b, a) \in R$

Transitive

Relation is Transitive if $(a, b) \in R \& (b, c) \in R$, then $(a, c) \in R$

Equivalence

If the relation is reflexive, symmetric and transitive, it is an equivalence relation.

Check for reflexive

Since, $(1,1) \in R$, $(2,2) \in R$, $(3,3) \in R$

Therefore, R is reflexive (1)

Check for symmetric

Since, $(1,2) \in \mathbb{R}$ and $(2,1) \in \mathbb{R}$

 $(2,3) \in R \text{ and } (3,2) \in R$

Therefore, R is symmetric (2)

Check for transitive

Here, $(1,2) \in R$ and $(2,3) \in R$ but $(1,3) \notin R$

Therefore, R is not transitive (3)

Now, according to the equations (1), (2), (3)

Correct option will be (A)

Question: 4

Solution:

According to the question,

Given set $S = \{x, y, z\}$

And $R = \{(x, y), (y, z), (x, z), (y, x), (z, y), (z, x)\}$

Formula

For a relation R in set A

Reflexive

The relation is reflexive if $(a, a) \in R$ for every $a \in A$

Symmetric

The relation is Symmetric if $(a, b) \in R$, then $(b, a) \in R$

Transitive

Relation is Transitive if $(a, b) \in R \& (b, c) \in R$, then $(a, c) \in R$

Equivalence

If the relation is reflexive, symmetric and transitive, it is an equivalence relation.

Check for reflexive

Since, $(x,x) \notin R$, $(y,y) \notin R$, $(z,z) \notin R$

Therefore, R is not reflexive (1)

Check for symmetric

Since, $(x,y) \in R$ and $(y,x) \in R$

 $(z,y) \in R$ and $(y,z) \in R$

 $(x,z) \in R$ and $(z,x) \in R$

Therefore, R is symmetric (2)

Check for transitive

Here, $(x,y) \in R$ and $(y,x) \in R$ but $(x,x) \notin R$

Therefore, R is not transitive (3)

Now, according to the equations (1), (2), (3)

Correct option will be (B)

Question: 5

Mark the tick aga

CLASS24

Solution:

According to the question,

Given set $S = \{x, y, z\}$

And $R = \{(x, x), (y, y), (z, z)\}$

Formula

For a relation R in set A

Reflexive

The relation is reflexive if $(a, a) \in R$ for every $a \in A$

Symmetric

The relation is Symmetric if $(a, b) \in R$, then $(b, a) \in R$

Transitive

Relation is Transitive if $(a, b) \in R \& (b, c) \in R$, then $(a, c) \in R$

Equivalence

If the relation is reflexive, symmetric and transitive, it is an equivalence relation.

CLASS24

Check for reflexive

Since, $(x,x) \in R$, $(y,y) \in R$, $(z,z) \in R$

Therefore, R is reflexive (1)

Check for symmetric

Since, $(x,x) \in R$ and $(x,x) \in R$

 $(y,y) \in R$ and $(y,y) \in R$

 $(z,z) \in R \text{ and } (z,z) \in R$

Therefore, R is symmetric (2)

Check for transitive

Here, $(x,x) \in R$ and $(y,y) \in R$ and $(z,z) \in R$

Therefore, R is transitive (3)

Now, according to the equations (1), (2), (3)

Correct option will be (D)

Question: 6

Solution:

According to the question,

Given set $Z = \{1, 2, 3, 4,\}$

And $R = \{(a, b) : a,b \in Z \text{ and } (a-b) \text{ is divisible by } 3\}$

Formula

For a relation R in set A

Reflexive

The relation is reflexive if $(a, a) \in R$ for every $a \in A$

Symmetric

The relation is Symmetric if $(a, b) \in R$, then $(b, a) \in R$

Relation is Transitive if $(a, b) \in R \& (b, c) \in R$, then $(a, c) \in R$

Equivalence

If the relation is reflexive, symmetric and transitive, it is an equivalence relation.

Check for reflexive

Consider, (a,a)

(a - a) = 0 which is divisible by 3

 $(a,a) \in R$ where $a \in Z$

Therefore, R is reflexive (1)

Check for symmetric

Consider, $(a,b) \in R$

.. (a - b) which is divisible by 3

- (a - b) which is divisible by 3

(since if 6 is divisible by 3 then -6 will also be divisible by 3)

 \therefore (b - a) which is divisible by $3 \Rightarrow (b,a) \in R$

For any $(a,b) \in R$; $(b,a) \in R$

Therefore, R is symmetric (2)

Check for transitive

Consider, $(a,b) \in R$ and $(b,c) \in R$

.. (a - b) which is divisible by 3

and (b - c) which is divisible by 3

[(a-b)+(b-c)] is divisible by 3] (if 6 is divisible by 3 and 9 is divisible by 3 then 6+9 will also be divisible by 3)

 \therefore (a - c) which is divisible by $3 \Rightarrow (a,c) \in R$

Therefore $(a,b) \in R$ and $(b,c) \in R$ then $(a,c) \in R$

Therefore, R is transitive (3)

Now, according to the equations (1), (2), (3)

Correct option will be (D)

Question: 7

Solution:

According to the question,

Given set $N = \{1, 2, 3, 4,\}$

And $R = \{(a, b) : a,b \in N \text{ and } a \text{ is a factor of } b\}$

Formula

For a relation R in set A

Reflexive

The relation is reflexive if $(a, a) \in R$ for every $a \in A$

Symmetric

The relation is Symmetric if $(a, b) \in R$, then $(b, a) \in R$

Relation is Transitive if $(a, b) \in R \& (b, c) \in R$, then $(a, c) \in R$

Equivalence

If the relation is reflexive, symmetric and transitive, it is an equivalence relation.

Check for reflexive

Consider, (a,a)

a is a factor of a

(2,2), (3,3)... (a,a) where $a \in N$

Therefore, R is reflexive (1)

Check for symmetric

a R b ⇒ a is factor of b

b R a ⇒ b is factor of a as well

 $Ex_{-}(2,6) \in R$

But (6,2) ∉ R

Therefore, R is not symmetric (2)

Check for transitive

 $a R b \Rightarrow a is factor of b$

 $b R c \Rightarrow b is a factor of c$

a R c \Rightarrow b is a factor of c also

Ex _(2,6), (6,18)

∴ $(2,18) \in R$

Therefore, R is transitive (3)

Now, according to the equations (1), (2), (3)

Correct option will be (B)

Question: 8

Solution:

According to the question,

Given set $Z = \{1, 2, 3, 4,\}$

And $R = \{(a, b) : a,b \in Z \text{ and } a \ge b\}$

<u>Formula</u>

For a relation R in set A

Reflexive

The relation is reflexive if $(a, a) \in R$ for every $a \in A$

Symmetric

The relation is Symmetric if $(a, b) \in R$, then $(b, a) \in R$

Transitive

Relation is Transitive if $(a, b) \in R \& (b, c) \in R$, then $(a, c) \in R$

Equivalence

If the relation is reflexive, symmetric and transitive, it is an equivalence relatio

CLASS24

Check for reflexive

Consider, (a,a) (b,b)

 \therefore a \ge a and b \ge b which is always true.

Therefore, R is reflexive (1)

Check for symmetric

a R b ⇒ a ≥ b

 $b R a \Rightarrow b \ge a$

Both cannot be true.

 $Ex _ lf a=2 and b=1$

 \therefore 2 \ge 1 is true but 1 \ge 2 which is false.

Therefore, R is not symmetric (2)

Check for transitive

a R b ⇒ a ≥ b

 $b R c \Rightarrow b \ge c$

∴ a ≥ c

Ex a=5, b=4 and c=2

∴ 5≥4 , 4≥2 and hence 5≥2

Therefore, R is transitive (3)

Now, according to the equations (1), (2), (3)

Correct option will be (C)

Question: 9

Solution:

According to the question,

Given set $S = \{....., -2, -1, 0, 1, 2,\}$

And $R = \{(a, b) : a,b \in S \text{ and } |a| \le b \}$

<u>Formula</u>

For a relation R in set A

Reflexive

The relation is reflexive if $(a, a) \in R$ for every $a \in A$

Symmetric

The relation is Symmetric if $(a, b) \in R$, then $(b, a) \in R$

Transitive

Relation is Transitive if $(a, b) \in R \& (b, c) \in R$, then $(a, c) \in R$

Equivalence

If the relation is reflexive, symmetric and transitive, it is an equivalence relation.

Check for reflexive

Consider, (a,a)

 $|a| \le a$ and which is not always true.

 $Ex_if a=-2$

 $|-2| \le -2 \Rightarrow 2 \le -2$ which is false.

Therefore, R is not reflexive (1)

Check for symmetric

 $a R b \Rightarrow |a| \leq b$

b R a ⇒ |b| ≤ a

Both cannot be true.

Ex _ If a=-2 and b=-1

 \therefore 2 \leq -1 is false and 1 \leq -2 which is also false.

Therefore, R is not symmetric (2)

Check for transitive

 $a R b \Rightarrow |a| \leq b$

 $b R c \Rightarrow |b| \leq c$

 $|a| \le c$

Ex $_a=-5$, b= 7 and c=9

 $\therefore 5 \le 7$, $7 \le 9$ and hence $5 \le 9$

Therefore, R is transitive (3)

Now, according to the equations (1), (2), (3)

Correct option will be (C)

Question: 10

Solution:

According to the question,

Given set $S = \{....., -2, -1, 0, 1, 2,\}$

And $R = \{(a, b) : a,b \in S \text{ and } |a - b| \le 1\}$

Formula

For a relation R in set A

Reflexive

The relation is reflexive if $(a, a) \in R$ for every $a \in A$

Symmetric

The relation is Symmetric if $(a, b) \in R$, then $(b, a) \in R$

Transitive

Relation is Transitive if $(a, b) \in R \& (b, c) \in R$, then $(a, c) \in R$

Equivalence

If the relation is reflexive, symmetric and transitive, it is an equivalence relation.

Check for reflexive

Consider, (a,a)

∴ $|a - a| \le 1$ and which is always true.

 $|2-2| \le 1 \Rightarrow 0 \le 1$ which is true.

Therefore, R is reflexive (1)

Check for symmetric

$$a R b \Rightarrow |a - b| \le 1$$

$$b R a \Rightarrow |b - a| \le 1$$

Both can be true.

Ex _ If a=2 and b=1

 $|2 - 1| \le 1$ is true and $|1 - 2| \le 1$ which is also true.

Therefore, R is symmetric (2)

Check for transitive

$$a R b \Rightarrow |a - b| \le 1$$

$$b R c \Rightarrow |b - c| \le 1$$

∴ $|a - c| \le 1$ will not always be true

$$Ex_a=-5$$
, $b=-6$ and $c=-7$

...
$$|6-5| \le 1$$
, $|7-6| \le 1$ are true But $|7-5| \le 1$ is false.

Therefore, R is not transitive (3)

Now, according to the equations (1), (2), (3)

Correct option will be (A)

Question: 11

Solution:

According to the question,

Given set $S = \{....., -2, -1, 0, 1, 2,\}$

And
$$R = \{(a, b) : a,b \in S \text{ and } (1 + ab) > 0 \}$$

Formula

For a relation R in set A

Reflexive

The relation is reflexive if $(a, a) \in R$ for every $a \in A$

Symmetric

The relation is Symmetric if $(a, b) \in R$, then $(b, a) \in R$

Transitive

Relation is Transitive if $(a, b) \in R \& (b, c) \in R$, then $(a, c) \in R$

Equivalence

If the relation is reflexive, symmetric and transitive, it is an equivalence relation.

Check for reflexive

Consider, (a,a)

 \therefore (1 + a×a) > 0 which is always true because a×a will always be positive.

 $Ex_ifa=2$

 \therefore (1 + 4) > 0 \Rightarrow (5) > 0 which is true.

Therefore, R is reflexive (1)

CLASS24

Check for symmetric

$$a R b \Rightarrow (1 + ab) > 0$$

$$b R a \Rightarrow (1 + ba) > 0$$

Both the equation are the same and therefore will always be true.

 $Ex _lf a=2 and b=1$

 \therefore (1 + 2×1) > 0 is true and (1+1×2) > which is also true.

Therefore, R is symmetric (2)

Check for transitive

$$a R b \Rightarrow (1 + ab) > 0$$

$$b R c \Rightarrow (1 + bc) > 0$$

 \therefore (1 + ac) > 0 will not always be true

 $Ex_a=-1$, b=0 and c=2

$$(1 + -1 \times 0) > 0$$
, $(1 + 0 \times 2) > 0$ are true

But
$$(1 + -1 \times 2) > 0$$
 is false.

Therefore, R is not transitive (3)

Now, according to the equations (1), (2), (3)

Correct option will be (A)

Question: 12

Solution:

According to the question,

Given set S = {...All triangles in plane....}

And
$$R = \{(\Delta_1, \Delta_2) : \Delta_1, \Delta_2 \in S \text{ and } \Delta_1 \equiv \Delta_2\}$$

Formula

For a relation R in set A

Reflexive

The relation is reflexive if $(a, a) \in R$ for every $a \in A$

Symmetric

The relation is Symmetric if $(a, b) \in R$, then $(b, a) \in R$

Transitive

Relation is Transitive if $(a, b) \in R \& (b, c) \in R$, then $(a, c) \in R$

Equivalence

If the relation is reflexive, symmetric and transitive, it is an equivalence relation.

Check for reflexive

Consider, (Δ_1, Δ_1)

... We know every triangle is congruent to itself.

$$(\Delta_1, \Delta_1) \in R \text{ all } \Delta_1 \in S$$

Therefore, R is reflexive (1)

Check for symmetric

CLASS24

 $(\Delta_1, \Delta_2) \in \mathbb{R}$ then Δ_1 is congruent to Δ_2

 $(\Delta_2, \Delta_1) \in \mathbb{R}$ then Δ_2 is congruent to Δ_1

Both the equation are the same and therefore will always be true.

Therefore, R is symmetric (2)

Check for transitive

Let $\Delta_1, \Delta_2, \Delta_3 \in S$ such that $(\Delta_1, \Delta_2) \in R$ and $(\Delta_2, \Delta_3) \in R$

Then $(\Delta_1, \Delta_2) \in \mathbb{R}$ and $(\Delta_2, \Delta_3) \in \mathbb{R}$

 $\Rightarrow \Delta_1$ is congruent to Δ_2 , and Δ_2 is congruent to Δ_3

 $\Rightarrow \Delta_1$ is congruent to Δ_3

 $(\Delta_1, \Delta_3) \in \mathbb{R}$

Therefore, R is transitive (3)

Now, according to the equations (1), (2), (3)

Correct option will be (D)

Question: 13

Solution:

According to the question,

Given set $S = \{....., -2, -1, 0, 1, 2,\}$

And $R = \{(a, b) : a,b \in S \text{ and } a^2 + b^2 = 1\}$

<u>Formula</u>

For a relation R in set A

Reflexive

The relation is reflexive if $(a, a) \in R$ for every $a \in A$

Symmetric

The relation is Symmetric if $(a, b) \in R$, then $(b, a) \in R$

Transitive

Relation is Transitive if $(a, b) \in R \& (b, c) \in R$, then $(a, c) \in R$

Equivalence

If the relation is reflexive, symmetric and transitive, it is an equivalence relation.

Check for reflexive

Consider, (a,a)

 \therefore $a^2 + a^2 = 1$ which is not always true

 $Ex_ifa=2$

 $\therefore 2^2 + 2^2 = 1 \Rightarrow 4 + 4 = 1$ which is false.

Therefore, R is not reflexive (1)

Check for symmetric

CLASS24

 $b R a \Rightarrow b^2 + a^2 = 1$

Both the equation are the same and therefore will always be true.

Therefore, R is symmetric (2)

Check for transitive

 $a R b \Rightarrow a^2 + b^2 = 1$

 $b R c \Rightarrow b^2 + c^2 = 1$

 \therefore $a^2 + c^2 = 1$ will not always be true

 $Ex_a=-1$, b=0 and c=1

$$(-1)^2 + 0^2 = 1$$
, $0^2 + 1^2 = 1$ are true

But $(-1)^2 + 1^2 = 1$ is false.

Therefore, R is not transitive (3)

Now, according to the equations (1), (2), (3)

Correct option will be (A)

Question: 14

Solution:

According to the question,

$$R = \{(a, b), (c, d) : a + d = b + c\}$$

Formula

For a relation R in set A

Reflexive

The relation is reflexive if $(a, a) \in R$ for every $a \in A$

Symmetric

The relation is Symmetric if $(a, b) \in R$, then $(b, a) \in R$

Transitive

Relation is Transitive if $(a, b) \in R \& (b, c) \in R$, then $(a, c) \in R$

Equivalence

If the relation is reflexive, symmetric and transitive, it is an equivalence relation.

Check for reflexive

Consider, (a, b) R (a, b)

$$(a, b) R (a, b) \Leftrightarrow a + b = a + b$$

which is always true.

Therefore, R is reflexive (1)

Check for symmetric

(a, b) R (c, d)
$$\Leftrightarrow$$
 a + d = b + c

$$(c, d) R (a, b) \Leftrightarrow c + b = d + a$$

Both the equation are the same and therefore will always be true.

Therefore, R is symmetric (2)

Check for transitive

(a, b) R (c, d) \Leftrightarrow a + d = b + c

(c, d) R (e, f)
$$\Leftrightarrow$$
 c + f = d + e

On adding these both equations we get, a + f = b + e

CLASS24

Also,

(a, b) R (e, f)
$$\Leftrightarrow$$
 a + f = b + e

... It will always be true

Therefore, R is transitive (3)

Now, according to the equations (1), (2), (3)

Correct option will be (D)

Question: 15

Solution:

According to the question,

O is the origin

$$R = \{(P, Q) : OP = OQ\}$$

Formula

For a relation R in set A

Reflexive

The relation is reflexive if $(a, a) \in R$ for every $a \in A$

Symmetric

The relation is Symmetric if $(a, b) \in R$, then $(b, a) \in R$

Transitive

Relation is Transitive if $(a, b) \in R \& (b, c) \in R$, then $(a, c) \in R$

Equivalence

If the relation is reflexive, symmetric and transitive, it is an equivalence relation.

Check for reflexive

Consider, $(P, P) \in R \Leftrightarrow OP = OP$

which is always true.

Therefore, R is reflexive (1)

Check for symmetric

$$(P, Q) \in R \Leftrightarrow OP = OQ$$

$$(Q, P) \in R \Leftrightarrow OQ = OP$$

Both the equation are the same and therefore will always be true.

Therefore, R is symmetric (2)

Check for transitive

$$(P, Q) \in R \Leftrightarrow OP = OQ$$

$$(Q, R) \in R \Leftrightarrow OQ = OR$$

CLASS24

Also,

$$(P, R) \in R \Leftrightarrow OP = OR$$

∴ It will always be true

Therefore, R is transitive (3)

Now, according to the equations (1), (2), (3)

Correct option will be (D)

Question: 16

Solution:

According to the question,

Q is set of all rarional numbers

$$R = \{(a, b) : a * b = a + 2b \}$$

<u>Formula</u>

* is commutative if a * b = b * a

* is associative if (a * b) * c = a * (b * c)

Check for commutative

Consider,
$$a * b = a + 2b$$

And,
$$b * a = b + 2a$$

Both equations will not always be true.

Therefore, * is not commutative (1)

Check for associative

Consider,
$$(a * b) * c = (a + 2b) * c = a+2b + 2c$$

And,
$$a * (b * c) = a * (b+2c) = a+2(b+2c) = a+2b+4c$$

Both the equation are not the same and therefore will not always be true.

Therefore, * is not associative (2)

Now, according to the equations (1), (2)

Correct option will be (C)

Question: 17

Solution:

According to the question,

$$Q = \{a,b\}$$

$$R = \{(a, b) : a * b = a + ab \}$$

Formula

* is commutative if a * b = b * a

* is associative if (a * b) * c = a * (b * c)

Check for commutative

Consider, a * b = a + ab

And,
$$b * a = b + ba$$

Both equations will not always be true.

Therefore, * is not commutative (1)

Check for associative

Consider, (a * b) * c = (a + ab) * c = a+ab + (a+ab)c=a+ab+ac+abc

And, a * (b * c) = a * (b+bc) = a+a(b+bc) = a+ab+abc

Both the equation are not the same and therefore will not always be true.

CLASS24

Therefore, * is not associative (2)

Now, according to the equations (1), (2)

Correct option will be (B)

Question: 18

Solution:

According to the question,

Q = { Positive rationals }

$$R = \{(a, b) : a * b = ab/2 \}$$

Formula

- * is commutative if a * b = b * a
- * is associative if (a * b) * c = a * (b * c)

Check for commutative

Consider, a * b = ab/2

And, b * a = ba/2

Both equations are the same and will always true.

Therefore, * is commutative (1)

Check for associative

Consider,
$$(a * b) * c = (ab/2) * c = \frac{ab}{2} \times c = abc/4$$

And,
$$a * (b * c) = a * (bc/2) = \frac{a \times \frac{bc}{2}}{2} = abc/4$$

Both the equation are the same and therefore will always be true.

Therefore, * is associative (2)

Now, according to the equations (1), (2)

Correct option will be (D)

Question: 19

Solution:

According to the question,

$$R = \{(a, b) : a * b = a - b + ab \}$$

Formula

* is associative if (a * b) * c = a * (b * c)

CLASS24

Check for commutative

Consider, a * b = a - b + ab

And,
$$b * a = b - a + ba$$

Both equations are not the same and will not always be true.

Therefore, * is not commutative (1)

Check for associative

Consider, (a * b) * c = (a - b + ab) * c

$$= a - b + ab - c + (a - b + ab)c$$

$$=a - b + ab - c + ac - bc + abc$$

And,
$$a * (b * c) = a * (b - c + bc)$$

$$= a - (b - c + bc) + a(b - c + bc)$$

$$=a - b + c - bc + ab - ac + abc$$

Both the equation are not the same and therefore will not always be true.

Therefore, * is not associative (2)

Now, according to the equations (1), (2)

Correct option will be (C)

Question: 20

Solution:

According to the question,

$$R = \{(a, b) : a * b = a + b - ab \}$$

<u>Formula</u>

- * is commutative if a * b = b * a
- * is associative if (a * b) * c = a * (b * c)

Check for commutative

Consider,
$$a * b = a + b - ab$$

And ,
$$b * a = b + a - ba$$

Both equations are the same and will always be true.

Therefore, * is commutative (1)

Check for associative

Consider,
$$(a * b) * c = (a + b - ab) * c$$

$$= a + b - ab + c - (a + b - ab)c$$

$$=a + b - ab + c - ac - bc + abc$$

And,
$$a * (b * c) = a * (b + c - bc)$$

$$= a + (b + c - bc) - a(b + c - bc)$$

$$=a + b + c - bc - ab - ac + abc$$

Therefore, * is associative (2)

Now, according to the equations (1), (2)

Correct option will be (D)

Question: 21

Solution:

According to the question,

Q = { All integers }

$$R = \{(a, b) : a * b = a^b \}$$

Formula

* is commutative if a * b = b * a

* is associative if (a * b) * c = a * (b * c)

Check for commutative

Consider,
$$a * b = a^b$$

And,
$$b * a = b^a$$

Both equations are not the same and will not always be true.

Therefore, * is not commutative (1)

Check for associative

Consider,
$$(a * b) * c = (a^b) * c = (a^b)^c$$

And,
$$a * (b * c) = a * (b^c) = a^{(b^c)}$$

Ex a=2 b=3 c=4

$$(a * b) * c = (2^3) * c = (8)^4$$

$$a * (b * c) = 2 * (34) = 2^{(81)}$$

Both the equation are not the same and therefore will not always be true.

Therefore, * is not associative (2)

Now, according to the equations (1), (2)

Correct option will be (C)

Question: 22

Solution:

According to the question,

$$R = \{(a, b) : a * b = a + b + ab \}$$

Formula

* is commutative if a * b = b * a

* is associative if (a * b) * c = a * (b * c)

Check for commutative

Consider, a * b = a + b + ab

And, b * a = b + a + ba

CLASS24

Both equations are same and will always be true.

Therefore, * is commutative (1)

Check for associative

Consider, (a * b) * c = (a + b + ab) * c

= a + b + ab + c + (a + b + ab)c

=a + b + c + ab + ac + bc + abc

And , a * (b * c) = a * (b + c + bc)

= a + b + c + bc + a(b + c + bc)

=a +b +c +ab +bc +ac +abc

Both the equation are same and therefore will always be true.

Therefore, * is associative (2)

Now, according to the equations (1), (2)

Correct option will be (D)

