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Chapter: 2. FUNCTIONS

Exercise : 2ZA

Question: 1
Solution:

Definition: A relation R from a set A to a set B is called a function if each element of A has a
unique image in B.

It is denoted by the symbol f:A—B which reads ‘f is a function from A to B ‘f maps A to B.

Let f:A—B,then the set A is known as the domain of f& the set B is known as co - domain of f. The
set of images of all the elements of A is known as the range of f.

Thus, Domain of f= {a]a € A,(a,f(a)) e f)
Range of f = {f(a) | ae A ,f(a) e B }

Example: The domain of i = sin x is all values of x i.e. R, since there are no restrictions on the
values for x. The range of i is betweeen -1 and 1. We could write thisas -1 sy < 1.

Queslion: 2
Solution:
1)injective function

Definition: A function f: A — B is said to be a one - one function or injective mapping if different
elements of A have different f images in B.

A function fis injective if and only if whenever f{x) = f(y), x = y.

Example: f(x) = x + 9 from the set of real number R to R is an injective function. When x= 3,then
(%) =12,when {(y) = 8,the value of y can only be 3,s0 x=y.

(ii) surjective function
Definition: If the function f:A—B is such that each elementin B (co - domain) is the ‘f image of
atleastone element in A, then we say that fis a function of A ‘onto’ B .Thus f: A—B is surjective if,

for all beB, there are some a€A such that f(a) = b.

Example: The function {(x) = 2x from the set of natural numbers N to the set of non negative even
numbers is a surjective function.

(iii) bijective function

Definition: A function f (from set A to B] is bijective if, for every y in B, there is exactlyone xin A
such that f(x) = y.Alternatively, f is bijective if it is a one - to - one correspondence between those
sets, in other words, both injective and surjective.

Example: If f(x) = x2,from the set of positive real numbers to positive real numbers is both
injective and surjective.Thus it is a bijective function.

(iv)many - one function

Defintion : A function f: A—B is said to be a many one functions if two or more elements of A have
the same f image in B.

trigonometric functions such as sinx are many - to - one since sinx =sin(2 7 + xX) = sin(4 1 + x)
and so one...

(v) into function

Definition: If f:A—B is such that there exists atleast one element in co - domain , which is not the
image of any element in the domain , then f(x) is into.

Letf(x} =y =x-1000



= x=y + 1000 = g(y) (say)
Here g(¥) is defined for each ye I, but g{y) & N for y = — 1000. Hence.f is into CLASSZ4
Question: 3

Solution:

(i) one - one but not onto

f(x) = 6x%

For One - One

f(x1) = 6x;

f(x;) = 6%5

put f{(x1) = f(xz) we get

6x1 = 6Xy

Hence, if f(x1) = f(x2), %1 = Xz

Function fis one - one

For Onto

f(x) =6x

let f(x) = y ,such thatyeN

6x=y
Sy 4
6
Ify=1
x=é = 0.166667

which is not possible as xeN
Hence, f is not onto.

(ii) one - one and onto

f(x) =x5

=y =x°

v |
b,

—

Since the lines do not cut the curve in 2 equal valued points of y, therefore, the function {f(x) is one
- one.

The range of f(x) = { - o0,00) = R{(Codomain)



..f(x) is onto
..f(x) is one - one and onto.

(i) neither one - one nor onto
f(x) =x2

for one one:

f(x1) = (x1)*

f(x2) = (x2)?

fi(x1) = f(xz2)

=(x)% = (x2)?

=XN1=X30rX;=—-X

Since x1 does not have a unique image it is not one - one

For onto

f(x)=y

such thatyeR
X“=y

ox =4y

If v is negative under root of a negative number is not real

Hence,f(x) is not onto.
..f(x) is neither onto nor one - one
(iv) onto but not one - one.

Consider a function :Z— N such that f(x) = |x|.
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Since the Z maps to every single elementin N twice, this function is onto but not one - one.

Z - integers

N - natural numbers.
Question: 4

Solution:

1f(2)

Since f(x) =x2-2,whenx=2
Sf2)=(2)2-2=4-2=2
Cf(2)=2

ii) f{4)

Since f(x) =3x-1,whenx=4
S =(38x4)-1=12-1=11
sS4 =11

i) £ - 1)

Since f(x) =x2-2,whenx=-1

Sf(-1)=(-1)2-2=1-2=-1



SE-1)=-1 CLASS24

iv) f( - 3)

Since f(x) =2x + 3,whenx=-3
cf(-3)=2%(-3)+3=-6+3=-3

Cf(-3)=-3

Questlion: 5

Solution:

To show: f: R — R: f(x]) =1 + x2is many - one into.
Proof:

f(x)=1+x2

=y=1+x2

u L/
L/

Since the lines cut the curve in 2 equal valued points ofy therefore the function f(x) is many one.

a 3 Kl ]

The range of f(x) = [1,00)2R(Codomain)

.".f(x) is not onto

=f(x}is into

Hence, showed that f: R - R : f(x) = 1 + x2 is many - one into.
Question: 6

Solution:

To show: f: R — R: f(x) = x* is many - one into.

Proof:

fi(x) = x*

=y =x*
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Since the lines cut the curve in 2 equal valued points of y, therefore, the function f(x) is many
ones.

The range of f(x) = [0,20)#R(Codomain)

.".f(x) is not onto

=f(x)is into

Hence, showed that f: R — R : f(x]) = x?is many - one into.
Question: 7

Solution:

To show: it R - R:: f(x) = x5 is one - one and onto.

Proof:
filx) = x5
=y = x5

Since the lines do not cut the curve in 2 equal valued points of y, therefore, the function f(x) is one
- one.

The range of f(x) = ( - @0,90) = R(Codomain)

..f(x} is onto



Hence, showed f: R — R : f(x]) = x5 is one - one and onto. CLA5524

Question: 8

Letf:[o.:r —R:f(x)=sinx

08

0.6

04

02

02 04 06 08 1 1.2 14 .6

Here in this range, the lines do not cut the curve in 2 equal valued points of y, therefore, the
function f(x) = sinx is one - one.

~

T
g:[O.—} - R:g(x)=cosx.

o

02

o 0z 04 08 o8 ! 12 14 \\

in this range, the lines do not cut the curve in 2 equal valued points of y, therefore, the function
f(x) = cosx is also one - one.

(f+g): [O.g] —R =sinx + cosx

n

/ N

035

in this range the lines cut the curve in 2 equal valued points of y, therefore, the function f(x) =



cosX + sinx is not one - one. CLAssz4
Hence,showed that each one of fand g is one - one but (f+ g) is not one - one.
Question: 9

Solution:

(@) f:N - N:f(x) =x%is one - one into.

fi(x) =x2
=y = x2
15
1
05
—
0 <%} 1

Since the function f(x) is monotonically increasing from the domain N — N
..f(x) is one -ane

Range of f(x) = (0,0)#N(codomain)

..f(x) is into

. F:N—= N:f(x) =x2is one - one into.

(i) f: Z— Z: f(x) = x2 is many - one into

fi{x) =x2

=y = x?

in this range the lines cut the curve in 2 equal valued points of y, therefore, the function f(x) = x2
is many - one .

Range of f(x) = (0,90)#Z(codomain)

. f(x) is into




S frZ = 7 f(x) = x? is many - one into

Question: 10

Solution:

(i) F: N = N : f(x) = x3 is one - one into.

fi(x) = x3

Since the function f(x) is monotonically increasing from the domain N — N
..f(x) is one -one

Range of f(x) = ( - o9,00)#N(codomain)

..f(x) is inta

S i N = N:f(x) =x2is one - one into.

~

7

(ii) f: Z —= Z: f(x) = x3is one - one into
f{x)=x3
Since the function f(x) is monotonically increasing from the domainZ — Z

.".f(x) is one -one

Range of f(x) = ( - o9,90)#Z(codomain)
. f(x) is into

S f i Z = Z:f(x) = x3is one - one into.
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Question: 11
Solution:
f{(x) = sinx

v = sinx

Here in this range, the lines cut the curve in 2 equal valued points of y, therefore, the function f(x)
= sinx is not one - one.

Range of f(x]) =[ - 1,1]#R(codomain)

.".f(x) is not onto.

Hence, showed that the function f: R — R : f{(x) = sin x is neither one - one nor onto.
Queslion: 12

Solution:

In the given range of N f(x) is monotonically increasing.

f(n) =n2+n+ 1 is one one.
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But Range of f{(n) = [0.75,00)#N(codomain)
Hence,f(n) is not onto.
Hence, proved that the function f: N — N: f(n) = (nZ2+ n + 1) is one - one but not onto.

Question: 13

Solution:
(1 :
—(n-1). when n is odd
]
f(n)=:{" )
l——n. when 1 is even
g
f(1)=0
f(2)=-1
f(3)=1
f(4)=-2
f{(5)=2
f(6)=-3

Since at no different values of x we get same value of y .".f(n) is one —one

And range of f(n) = Z = Z(codomain)

.. the function f: N — Z, defined by

{l{n —1). when n is odd
3

f(n)=
lqn. when 1 is even

is both one - one and onto.
Question: 14

Solution:
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-2 ] 2 -

Since the function f{x) can acceptany values as per the given domain R, therefore, the domain of
the function f(x) =x2+ 1is R.

The minimum value of f(x) = 1

=>Range of f(x) = [ - 1,00]

ierange (f)={y€eR:y =1}
Ans:dom(f)=Randrange({}={yeR:y=1}
Question: 15

Solution:

For a relation to be a function each element of 15! set should have different image in the second
set(Range)

i) (@) f={(-1,2),(1,8), (2 11), (3, 14)}
Here, each of the first set element has different image in second set.
sfisafunction whose domain={-1,1, 2, 3}and range () ={2,8, 11,14}
(i) g={(1, 1), (1. - 1), (4, 2), (9, 3).(16, 4)}
Here, some of the first set element has same image in second set.
.. gis nota function.
(iii) h = {{a, b}, (b. <), (c. b). (d. c)}
Here, each of the first set element has different image in second set.
.".h is a function whose domain = {a, b, ¢, d} and range (h) = {b, ¢}
(range is the intersection set of the elements of the second set elements.)
Question: 16
Solution:
For domain (1 + x2)=0
=x?£ -1
=>dom(f) =R
For the range of x:
x4 1-1 1

=y = = 1-

xT+1 xT+1

Ymin = 0 (when x = 0)

Vmax = 1 (when x=00)



range of f(x) = [0,1)

2

-2 o 2 4
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For many one the lines cut the curve in 2 equal valued points of y therefore the function f(x)

-

= "xh is many - one.
¥+l

Ans:

dom(f) =R

range(f)=[0.1)

x'.'

function f(x) =

YT 15 many - one.

Question: 17

Solution:

@)
£

Here, \x}l {2,which is rational

Sf(1/2)=1
(i) f (\5)

Here, x = V2, which is irrational
SAV2)=-1

(iii) £ ( )

Here,x = [], which is irrational

f(m) -1
[iv)f(2+ %)

Herex=2 + \[3, which isirrational

Cf(2+v3)=-1

Ans. (i) 1 (i) - 1 (iii) - 1 (iv) - 1

Exercise : 2B

Question: 1
Solution:
@Mgof
Tofind: go f

Formula used: g o f=g(f(x))



Given: f={(1,4).(2,1),(3.3). (4, 2)}and g = {(1, 3). (2, 1),

(3.2). (4. 4)}

Solution: We have,
gof(1)=g(f(1))=g(4)=4

gof{2) =g(f(2))=g(1)=3

gof(3) = g(f(3))=g(3) =2

gof(4) =g(f(4)) =g(2)=1

Ans) gof={(1,4),(2,3).(3,2), (4 1)}
(i) fog

To find: fo g

Formula used: fo g = f(g(x])

Given: f={(L 4)., (2. 1), (3, 3). (4, 2)}and g = {(1, 3), (2, 1),

(3.2). (4,43}

Solution: We have,

fog(1) = f(g(1)) =f(3) = 3

fog(2) = f(g(2)) = f(1) = 4
fog(3)=f(g(3))=1f(2) =1

fog(4) = f(g(4)) = f(4) = 2

Ans) fog={(13).(2,4).(3,1). (4, 2)}
(iii) fof

To find: fo f

Formula used: fo f= f(f(x))

Given: f={(1,4), (2, 1), (3, 3), (4. 2)}
Solution: We have,

fof(1) = f(f(1)) =f(4) =2

fof(2) = f(f(2)) =f(1) =4

fof(3) = f(f(3)) =f(3) =3

fof(4) = f(f(4)) =f(2) =1

Ans) fo f={(1,2),(2.4). (3. 3). (4. 1)}
Question: 2

Solution:

Megof

Tofind: go f

Formula used: g o f = g(f(x])

Given: f={(3,1), (92, 3), (12,4)} and g= {(1, 3). (3. 3).(4, 9). (5. 9)}

Solution: We have,
gof(3)=g(f(3))=g(1)=3

gof(9) = g(f(9)) = g(3) =3
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gof(12) =g(f(12))=g(4) =9
Ans) go f={(3.3), (9, 3). (12,9)} c"Assz4
(i) fog

To find: fo g

Formula used: fo g = f(g(x))

Given: f= {(3, 1), (9, 3), (12, 1)} and g = {(1. 3). (3. 3).(4, 9). (5. 9)}
Salution: We have,

fog(1)=f(g(1))=f(3)=1

fog(3)=f(g(3))=£(3)=1

fog(4) = f(g(4))=£(9) =3

fog(5)=f(g(5))=£9)=3

Ans) fo g ={(1 1).(3.1). (4 3). (5. 3)}

Question: 3

Solution:

To prove: (gof) % (Fo g)

Formula used: (i) g o f = g(f(x))

(i) fo g = f(g(x))

Given: (i) f: R - R: f(x) = x2

(ig:R—=>R:g(x)=(x+1)

Proof: We have,

gof=g(f(x)) =g(®) = (x*+ 1)

fog=Mgld) =g(x+1) = [(x+1)2+ 1] =x2 + 2x + 2

From the above two equation we can say that (g o ) # (fo g)
Hence Proved

Question: 4

Solution:

Mgof

To find: go f

Formula used: g o f = g(f(x))

Given: (i) f: R — R: f(x) = (2x + 1)

(i)g:R—R:glx) =(x2-2)

Solution: We have,

gof=g(f(x))=g(2x+1)=[(2x+1)?- 2]

= 4x?+4x+1-2

=4x2+4x -1

Ans).gof(x)=4x2+4x-1



(i) fo g

Tofind:fog

Formula used: fo g = f(g(x))

Given: (i) f:R—=R: f{x)=(2x+ 1)
(iiJg: R—= R:g(x]) = (x*-2)

Solution: We have,

fog=1f(g(x)) =f(x*-2) = [2(x*-2) + 1]
= 2x%2-4 +1

=2x%-3

Ans).fog(x)=2x2-3

(i) fof

Tofind: fof

Formula used: fo F=f{f(x))

Given: (i) f: R—=R:f(x) = (2x + 1)
Solution: We have,
fof=Mfx))=f2x+1)=[2(2x+1)+1]
=4x+2+1

=4x + 3

Ans).fo f(x) =4x+3

(W) gog

To find: gog

Formula used: g o g = g(g(x))

Given: (i)g:R— R:g(x) = (x2-2)
Solution: We have,

gog=glgx) =gx*-2)=[ (x*-2)?- 2]
= xt-4x?2+4-2

= x?-4x? + 2

Ans).gog () =x*-4x2+ 2

Question: 5

Solution:

Mgof

Tofind:gof

Formula used: g o f = g(f(x])

Given: (i) f:R—=R:f{x)=(x2+3x+ 1)
(i) g: R = R:g(x) = (2x - 3)

Solution: We have,

gof=g(f(x))=g(x2+3x+1)=[2(x2+3x+1)-3]
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= 2x2+06x+2-3

=2x2+6x-1
Ans).gof(x)=2x2+6x-1

(ii) fog

To find: fog

Formula used: fo g = f(g(x))

Given: (i) f:R—=R:f(x) = (x2+ 3x+ 1)
(i) g:R—R:g(x) =(2x-3)

Solution: We have,

fog=fg(x))=f(2x-3)=[(2x-3)2+3(2x-3)+1]

= 4x?-12x+9+6x-9+ 1

= 4x2-6x+1
Ans).fog(x)=4x2-6x+ 1

(i) gog

Tofind:gog

Formula used: g o g = g(g(x))
Given: (i) gt R—= R:g(x) =(2x-3)
Solution: We have,
gog=g(g(x))=g(2x-3)=[2(2x-3)-3]
=4x-6-3

=4x-9

Ans)l.gog(x)=4x-9
Question: 6

Solution:

To prove: fof=f

Formula used: f o f = f(f{(x])
Given: () f: R — R: f(x) = |x|
Solution: We have,

fo £=f(f(x)) = f(Ix]) = |x]] = x| = f(x)
Clearly fo f=1f.

Hence Proved.

Question: 7

Solution:

|
To find: formula for h o (g o f)
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To prove: Show that [ho (g o f)]ﬁ=0

Formula used: f o f = f(f(x])
Given: (i) f: R— R: f(x) = x2

(i) g:R—>R:g(x)=tan x

(iii) h: R - R:h(x) =logx
Solution: We have,

ho(gof) =hog(f(x]) = hog(x?)
=h(g(x?)) = h (tanx?)

=log (tan x2)

ho (g of) =log (tan x?)

For,[h o (gof)]ﬁ

= 1og [t ( 7|

=log |tan %]

=log1l

=0

Hence Proved.

Question: 8

Solution:

Toprove: (fog)l=Ig=(gof).
Formula used: (i) fo g = f(g(x))
(i) g o f=g(f(x]))

Given: (i) f: R —» R: f(x)} = (2x - 3)
({i1g:R >R :g(x)= %(x+3)
Solution: We have,

fog=1f{g(x])

= F(%(x+3))

_ 1

- [o(boes) -9
=x+3-3

=1g

go f=g(f(x))

=g(2x-3)
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1
= 5(2x-3+3)

=5 (2x)

Clearly we can see that (fog)=Ig=(go f)=x

Hence Proved.

Question: 9

Solution:
Tofind:g:Z—=Z:g0f=1Iz
Formula used: (i) fo g = f(g(x])
(ii) g o F=g(f(x])

Given: (i)g:Z—=Z:gof=1Ig
Solution: We have,

f(x) = 2x

Let f(x) =y

= y=2x

Letg(y) = %
Whereg: Z— Z
Forgof,
= g(f(x))
= g(2x)

2x

- —

2

:>x=lz

Clearly we can see that (go f)=x=1z

The required function is g(x) = %

Question: 10

Solution:
Toshow:ho(gof)=(hog)of
Formula used: (i) fo g = {f{g(x))
(i) g o f=g(f(x])
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Given: (i) f: N— N :f(x]) = 2x
([{i)g:N->N:gly)=3y+4
(i) h:N— N:h(z) =sinz
Solution: We have,
LHS=ho(gof)

= h o (g(((x))

= h(g(2x))

= h(3(2x) +4)

= h(6x +4)

= sin(6x + 4)
RHS=(hoglof

= (h(g(x])) o f

= (h(3x+4))af

= sin(3x+4) o f

Now letsin(3x+4) be a function u
RHS=uof

= u(f(x))

= u(2x)

= sin(3(2x) + 4)

= sin(6x + 4) = LIS

Hence Proved.

Question: 11

Solution:

=33 4
Tofind: (fog) (?) +(gof) (5)

Formula used: (i) fo g= f(g())

(i) g o f=g(f(x))

Given: (i) f is a greatest integer function
(ii) g is an absolute value function

f(x) = [x] (greatest integer function)

g(x) = || (absolute value function)

(9 Bso
-3\ -3
g(?)= [7| = 1.5 ... (ii)

Now, for (fog) (;) +(gof) (;)
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-(s(2))ss(3))

Substituting values from (i) and (ii)

= f(1.5) + g(1)

=[1.5]+]|1]
=1+1=2
Ans) 2

Question: 12

Solution:

Tofind:fog, gof,(fog)(2)and(gof) (-3)
Formula used: (i) f o g = f(g(>))

(if) g o F=g(f(x]))

Given: (iJf:R>R:f(x)=x2+ 2

S ) _ X
(||)g.RHR.g(x)_x_1,x +1

fog=f(g(x])

(x)?
(x-1)2 "

22
fog(2)= %4—2

Ans) =

= %

Ans) =6
go f=g(f(x])
= g(x?+2)
X242
= o9
X‘+2-1
A X242
ns) = x2+1
-3242
(gof)(-3) = 3741

_9+2
T 9+1

11

Ans) = 10

Exercise : 2C
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Question: 1
Solution: CLASSZ4
To prove: function is one-one and onto
Given: f: R —» R : f(x)= 2x
We have,
f(x) =2x
For, f(x1]) = f(x2)
= 2xq = 2x5
= X1 =Xy
When, f(x41) = f{x2) then x1 = x5
.. f(x) is one-one
f(x) = 2x
Let f(x) = y such thaty € R
=y =2x
Y

=X =—

2
Sincey €R,

ﬂ%ER

= x will also be a real number, which means that every value of y is associated with some x
.. f(x) is onto

Hence Proved

Question: 2

Solution:

To prove: function is one-one and into
Given: f: N — N : f(x)= 3x

We have,

f{x) =3x

For, f(x1) = f(xz2)

= 3x1 = 3x2

=X, = X3

When, f(x,) = f(x3) then x; = x5

.. f(x) is one-one

f(x) = 3x

Let f(x) = y such thaty € N

=y =3x



o x= CLASS24
:»))’(___1"
~3

But as per ques‘.l:icmx €N , hence x can not be ;1
Hence f(x) is into

Hence Proved

Question: 3

Solution:

To prove: function is neither one-one nor onto
Given: f: R > R: f(x) = x2

Solution: We have,

filx) =x2

For, f(x1]) = f(xz2)

= xi=xf

=>X1 =Xz OI, X; = -X3
Since x: doesn’thas unique image

.. f(x] is not one-one
f(x) =x2
Let f(x) = y such thaty € R

=y =x2

=X = ﬁ

Ify=-1,asy €R

Then x will be undefined as we cannot place the negative value under the square root
Hence f(x) is not onto

Hence Proved

Question: 4

Solution:

To prove: function is one-one and into
Given: f: N — N : f(x) = x2

Solution: We have,

f(x) = x2

For, f(x1) = f(xz)

= %12 = x52

= X1 = X3



Here we can't consider x: = -xz as X € N, we can’t have negative values
.. f(x) is one-one

f(x) = x2

Let f(x) = y such thaty € N

::»y::l{2

=X = ﬁ

Ify=2,asyeN

Then we will get the irrational value of x, but X € N
Hence f(x) is not into

Hence Proved

Question: 5

Solution:

To prove: function is neither one-one nor onto
Given: f: R > R: f(x) = x*

We have,

fi(x) = x*

For, f{x1) = f(xz)

=yt = x5

= (-39 =0

=% -%) M +x)=0

= (x1-%3) (X1 +x2) (4 2+ x°) =0

= X{ = X3 OF, X{ = -X3 OF, X; 2 = -X5°

We are getting more than one value of x; (no unique image)
.. f[x) is not one-one

f(x) = x#

Let f(x) = y such thaty € R

:)y:x4
— 40,

Ify=-2,asy€eR

CLASS24

Then x will be undefined as we can’t place the negative value under the square root

Hence f(x) is not onto
Hence Proved
Question: 6

Solution:



To prove: function is one-one and into
Given: f: Z - Z: f(x) = x°

Solution: We have,

f(x) = x3

For, f(x1) = f(x2)

3=y}

= X
= X1 = X3z

When, f(x1) = f(x3) then x1 = x5
.. f(x) is one-one

f(x) = 3

Let f(x) = ysuch thaty e Z

=y =x

=X = w

Ify=2,asy€ Z

Then we will get an irrational value of x, butX € Z
Hence f(x]) is into

Hence Proved

Question: 7

Solution:

To prove: function is one-one and onto
) 1
Given: f: Ry =Ry : f(x) = 3

We have,

1
f(x) = =
For, f(x1) = f(x2)

1 1
= —= —
X1 Xz

= Xy = X3
When, f(x1) = f(x3) then x1 = x5

.. f(x) is one-one

CLASS24
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=xwill also € Ry, which means that every value of y is associated with some x
.. f(x) is onto

Hence Proved

Question: 8

Solution:

To prove: function is many-one into
Given: f: R—-> R:f(x) =1+ x?

We have,

f(x) =1 +x2

For, f(x1) = f(xz)
=1+x2=1+x2

=x2=x7

=x%%-x2=0

= (x1-x3z) (X1 +x2) =0

= X; = X3 Or, X1 = —X3

Clearly x1 has more than one image
.. f[x) is many-one

f(x) =1+ x2

Let f(x) = y such thaty € R

= y=1+x2

=2x2=y-1

=X=4y-1

Ify=3,asyY€R

Then x will be undefined as we can’t place the negative value under the square root
Hence f(x) is into

Hence Proved

Question: 9

Let

Solution:

To find: F!

2x-7

Given: fi R - R : f{x) = 47

We have,



f(x)

Let f(x) = y such thaty € R

2x-7
=4y =2x-7

= 4y + 7 = 2x

4y +7
= X= y2+
4y +7
1=
=fl= 5
ay+7
Ans) fl(y) = : forally eR

2

Question: 10

Solution:

To find: F!

Given: f: R—- R: f(x) =10x+ 3
We have,

f(x)=10x+ 3

Let f(x) = y such thaty € R
=y=10x+3

=y-3=10x

y-3
10

(=

_Ia

-1
=f 10

y-3
Ans) fil(y) = 10

forally eR
Question: 11

Solution:

To prove: function is many-one and into

Given:f:R =R : f(x):{

We have,

f(x) = 1 when x is rational

It means that all rational numbers will have same image i.e. 1

=f{2)=1=f(3), As 2 and 3 are rational numbers

Therefore f(x) is many-one

The range of function is [{-1},{1}] but codomain is set of real numbers.

Therefore f(x) is into

1, if x isrational
-1, if x isirrational

CLASS24



Question: 12
Letf(x)=x+7

Solution:

To find: (Fo g) (7)

Formula used: fo g = f(g(x))
Given: (i) f(x)=x+7
(iDgx)=x-7

We have,

fog=fg(x)=fx-7)=[(x-7)+7]

= x
(fog) (x)=x
(fog) (7)=7

Ans). (fog) (AN =7

Question: 13

Solution:
Toprove:gof=fog
Formula used: (i) fo g = f{g(x))
(ii) g o F=g(f(x))

Given: (i) f: R — R : f(x) = x2
(Dg:R—-R:g(x)=(x+1)
We have,

fog="F(g(x)) =f(x+7)
fog=(x+7)2=x2+14x + 49
go f=g(f(x)) = 2(x*)
gof=(x2+1)=x2+1
Clearlygof+fog

Hence Proved

Question: 14

Solution:

To find: fo f

Formula used: (i) f o f = f(f(x))
Given: (i) f: R > R: f{x]) = (3 - x5)1/3
We have,

fo f=f(f()) = f((3 - x?)/3)
fof=[3-{(3-x3)/3}3]¥3

“[3-(3-x7)]7

CLASS24



=[3-3+x3]13 CLASS24

= [x3]1/3

=x

Ans)fof(x)=x

Question: 15

Solution:

To find: f{f(x)}

Formula used: (i) f o f = £f(f(x))
Given: () f: R > R: f(x) =3x + 2
We have,

HFGA} = fFG)) = f(3x + 2)
fof=3(3x+2)+2

=9x + 6 + 2

=9x + 8

Ans) f{f(x)} = 9x + 8

Question: 16

Solution:

To find: go f

Formula used: g o f = g(f(x))
Given: (i) £= {(1, 2), (3.5), (4. 1)}
(i) g = {(1, 3). (2. 3). (5. 1)}

We have,

gof(1) =g(f(1)) = g(2) =3
gof(3) =g(f(3))=g(5) =1
gof(4) = g(f(4)) =g(1) =3

Ans) go f={(1,3), (3,1), (4 3)}
Question: 17

Solution:

Tofind: fof

Formula used: fo f= f(f(x))
Given: (i) f= {(1, 4), (2, 1] (3. 3], (4, 2)}
We have,

fof(1) = f(f(1)) =f(4) =2

fof(2) = f(f(2)) =f(1) =4

fof(3) = f(f(3)) =f(3) =3

fof(4) = f(f(4)) = f(2) = 1



Ans) fo f={(1,2),(2,4), (3, 3). (4,1)}

Question: 18

Solution:
Tofind:gofandfog
Formula used: (i) fo g = f{g(x))
(i) g o f= g(f(x))

Given: (i) f(x) = 8x3

(i) g(x) =x/3

We have,

go f=g(f(x)) = g(8x7)

go f:(sxzi)%: 2x

fog=flgl)) = fx*)

143
fog =8()(5) = 8x
Ans)gof=2xandfog= 8x
Question: 19

Solution:

To find: the functiong : R—R:gof=fog=1,

Formula used: (i) g o f = g(f(x))
(ii) fo g = f(g(x))

Given: f: R—-> R: f(x) =10x+ 7
We have,

f(x)=10x+7

Let f(x) =y

=y=10x+7

=y-7=10x

y-7
=X=70

-7
Letg(y) = ”1—0 whereg:R—=R

gof=g(f(x))=g(10x+ 7

) (10x+7)-7

CLASS24
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x-.
10

Clearly go f=fo g=1Ans). g(x) =

Questlion: 20

Solution:

To state: Whether fis one-one

Given: f={(1,4), (2,5). (3, 6)}

Here the function is defined from A —» B

For a function to be one-one if the images of distinct elements of A under f are distinct
i.e. 1,2 and 3 must have a distinct image.

From f={(1,4), (2,5). (3, 6)} we can see that 1, 2 and 3 have distinct image.
Therefore fis one-one

Ans) f is ane-one

Exercise : 2D

Question: 1

Solution:

To Show: that f is invertible

To Find: Inverse of f

[NOTE: Any functions is invertible if and only if it is bijective functions (i.e. one-one and onto)]
one-one function: A function f: A — B is said to be a one-one function or injective mapping if
different elements of A have different images in B. Thus forx;, x;C A & f(x;), f(x3) € B, f{[x1) =
[(x2) <> x1= X3 or X3 7 x> [(x1) +# [(x2)

onto function: If range = co-domain then f{x) is onto functions.

So, We need to prove that the given function is one-one and onto.

f=A— |3
5 S {57
3 T [

|
4 ——>11
5 f— =13

As we see that inthe above figure (2 is mapped with 7), (3 is mapped with 9), (4 is mapped with
11),

(5 is mapped with 13)
Sao it is one-one functions.

Now elements of B are known as co-domain. Also, a range of a function is also the elements of
B(by definition)

So it is onto functions.



Hence Proved that fis invertible.

Now, We know thatiff: A — B then f1: B — A (if itis invertible)

So,
fi=B — A
7 2
9 -—_— + '.-3
|
11 1 4

13—/ T 5
Sof1={(7,2),(9, 3)(11,4),(13,5)}
Question: 2
Solution:

To Show: that f is invertible

To Find: Inverse of f

CLASS24

[NOTE: Any functions is invertible if and only if it is bijective functions (i.e. one-one and onto)]

one-one function: A function f: A — B is said to be a one-one function or injective mapping if

different elements of A have different images in B. Thus for x1, %€ A & f(x,), f(x3) € B, f(x1) =

f(xz) € x1=%z 0r X155 %292 f(x,) 7 f(x2)

onto function: If range = co-domain then f(x) is onto functions.

So, We need to prove that the given function is one-one and onto.

Let %1, x5 €E Rand f(x) = 2x+3.So f(x;) = f(x3) — 2x;+3 = 2x5+3 — x;=X5

So f(x1) = f(x2) € x;= %3 f(x) is one-one
Given co-domain of f(x) is R.

—3
Lety = f(x) = 2x+3 ,So x = VT [Range of f{(x) = Domain ofy]

So Domain of y is R(real no.) = Range of {(x)
Hence, Range of {{x) = co-domain of f(x) = R
So, f(x) is onto function

As itis bijective function. So it is invertible
Invers of f(x) is F1(y) = 3:—3
Question: 3

Solution:

To Show: that f is invertible

To Find: Inverse of f

[NOTE: Any functions is invertible if and only if it is bijective functions (i.e. one-one and onto)]



one-one function: A function f: A — B is said to be a one-one function or injec!

CLASS24

different elements of A have different images in B. Thus for x1, x;€ A & f(xq), fi
fxz) > x1=xz or 33 x> f(x1) F [(x2)

onto function: If range = co-domain then f(x) is onto functions.

So, We need to prove that the given function is one-one and onto.

Let x1, x3 € Q and f{x) = 3x-4.50 f(x1) = f(x3) = 3x1 -4 = 3% - 4 > x1=X3

So f(x1) = f(x3) € x1= %3 f(x) is one-one

Given co-domain of f(x) is Q.

Lety=f(x)=3x-4,So0x= y:ii [Range of f(x) = Domain of y]

S0 Domain of y is Q = Range of f(x)

Hence, Range of f(X) = co-domain of f{(x) = Q

So, f{x) is onto function

As it is bijective function. So it is invertible

Invers of f(x) is f1(y) =

yt4
3

Question: 4

Let To Show: that f is invertible

To Find: Inverse of f

[NOTE: Any functions is invertible if and only if it is bijective functions (i.e. one-one and onto)]
one-one function: A function f: A —+ B is said to be a one-one function or injective mapping if
different elements of A have different images in B. Thus for x1, x2C A & f(xq), f(xz) € B, f(x1) =
(%) € x1=% or X157 %3¢ [[x1) # f(x2)

onto function: Ifrange = co-domain then f(x) is onto functions.

So, We need to prove that the given function is one-one and onto.

(3x+1)

(3%, 41) _ (3x,+1)

Let %1, X2 € Q and f(x) = g
2

.So f(le = f(XZJ —3 - X1=Xp

So f(x1) = f(%X2) < X1= X3, f(x) is one-one

Given co-domain of f{x) is R.

Let y = f(x)

3x+1 2y—1
_Bx ), Sox= y3 [Range of f(x) = Domain of y]
2

So Domain of y is R = Range of f{x)
Hence, Range of f(x) = co-domain of f(x) = R
So, f(x) is onto function

As it is bijective function. So it is invertible

. 2y-—1
Invers of f(x) is f1(y) = 3

Question: 5

If To Show: thatfo f(x) =x



(4x+3)

Finding (Fo ) (x) = (4 o) 4]+3) 4(4x+3) +3(6x-4) 16x+12+18x—12 _35% CLAssz4

g (3% 130 —4) 6(4x+3)—4(6x—4) 24x+18—24x+16 35
(6\: 4)

Question: 6

Solution:

To Show: that f is one-one and onto

To Find: Inverse of f

[NOTE: Any functions is invertible if and only if it is bijective functions (i.e. one-one and onto)]

one-one function: A function f: A — B is said to be a one-one function or injective mapping if

different elements of A have different images in B. Thus for x1, x2C A & f(x1), f(x3) C B, f(x1) =

[(xz) < xy3=xg or X35 x> [(x) 3 £(x2)

onto function: If range = co-domain then f(x) is onto functions.

So, We need to prove that the given function is one-one and onto.

(4x,+3) {4x,43) l .
- — -
(6%,—4) = (6x5—4) on solving we get X1=X»

Let %3, X2 € Qand f(x) = S f(xy) = f(x3) —

[6\ 4]

So f(x1) = f(x2) < x3= X, f(x) is one-one
Given co-domain of f(x) is R except 3x-2=0.

(43437 4y+3 ) /LN
(_“_Hbo X = n |[Range of f(x) = Domain of y]

Lety = f(x]) =
So Domain of y is R (except 3x-2=0) = Range of f(x)
Hence, Range of f(x) = co-domain of f(x) = R except 3x-2=0
So, f(x) is onto function

As it is bijective function. So it is invertible

y+3
2

Invers of f{x) is f1(y) =

Question: 7

Solution:

To Show: that f is one-one and onto

To Find: Inverse of f

[NOTE: Any functions is invertible if and only if it is bijective functions (i.e. one-one and onto)]

one-one function: A function f: A — B is said to be a one-one function or injective mapping if

different elements of Ahave different images in B. Thus for x1, x;€ A & f(xq), f(x3) € B, f(x1) =

f(xz) 2 x3=xz or x33 x4 {[(x;) 7 f(x2)

onto function: If range = co-domain then f(x] is onto functions.

So, We need to prove that the given function is one-one and onto.

(4xy) (4x35)

Ay . . _
(@x,+4) = 3r.+a) 0N solving we getx;=x3

4x
Let x4, x3 € Q and f(x) =(3:—l4] So f(xq) = f(xp) —

So f(x;) = f(x2) o Xa=x, f(x) is one-one



Given co-domain of f(x) is R except 3x+4=0.
CLASS24

(4x) 4y . .
Lety = f(x]) = Bx14] Sox= -3 [Range of f(x) = Domain of ¥]

So Domain of ¥ is R = Range of f(x)

Hence, Range of [(x) = co-domain of f(x) = R except 3x+4=0
So, f(x) is onto function

As it is bijective function. So it is invertible

4y
4—-3y

Invers of f(x) is F1(y) =

Question: 8

Solution:

To Show: that f is invertible

To Find: Inverse of f

[NOTE: Any functions is invertible if and only if it is bijective functions (i.e. one-one and anto)]

one-one function: A function f: A —+ B is said to be a one-one function or injective mapping if

different elements of A have different images in B. Thus for x1, x3€C A & f(x1), f(x3) € B, f(x1) =
fxz) <2 xy=xz orx1% %3¢ f[x;) # f(x32)

onto function: If range = co-domain then f(x) is onto functions.

So, We need to prove that the given function is one-one and onto.

Let x1, x5 € Rand f(x) = (9x2 + 6x - 5).50 f(x1) = f(x2) — (9 12 + 61, -5)=(9x :2 + 6x, —5) on
solving we get— x1=X2z

So f(x1) = f{xz) ¢ x3= x; f(x) is one-one

Given co-demain of f(x) is [-5, o]

Lety =f(x) =(9x2 + 6x — 5), So x = —1t [Range of {(x) = Domain of y]
3

S0 Domain of y = Range of f(x) = [-5, o]
Hence, Range of f(x) = co-domain of f(x) =[-5, o]
So, f(x) is onto function

As it is bijective function. So it is invertible

Invers of f(x) is F1(y) =~ VY *0,
3

Question: 9

Solution:

To Show: that f is invertible

To Find: Inverse of f

[NOTE: Any functions is invertible if and only if it is bijective functions (i.e. one-one and onto)]

one-one functon: A function f: A — B is said to be a one-one function or injective mapping if



different elements of A have different images in B. Thus for x1, x2€ A & f(x¢), fi

f(x2) € x1=x or X957 %26 f(x4]) F f(x2) CLASSZ4
onto function: Ifrange = co-domain then f(x) is onto functions.

So, We need to prove that the given function is one-one and onto.

Let x4, x3 € Rand f{x) = 4x% + 12x + 15 So f(x;) = f(x3) — (4_1;'12 +12x, +15) = (41-32 + 121, +1

5), on solving we get— x;=x3

So f(x1]) = f{x2) € x3= x3, f(x) is one-one

Given co-domain of f(x) is Range(f).

-3 +\d"

Lety=f(x)=4x2+12x + 15,50 x = y-6 [Range of [(x)} = Domain of y]
2

S0 Domain of y = Range of f(x) = [6, o]
Hence, Range of f(x) = co-domain of f(x) = [6, o]
So, f(x) is onto function

As it is bijective function. So it is invertible

Invers of f(x) is F1(y) =V _©.
2

Question: 10

Solution:

To Show: that f is one-one and onto

To Find: Inverse of f

[NOTE: Any functions is invertible if and only if it is bijective functions (i.e. one-one and onto)]
one-one function: A function f: A + B is said to be a one-one function or injective mapping if
different elements of A have different images in B. Thus for x1, x2€ A & f(x,), f(x3) € B, f(x1) =
[[x;) €2 x3=xg or X155 %62 [[x,) 7 ()

onto function: If range = co-domain then f(x) is onto functions.

So, We need to prove that the given function is one-one and onto.

x-1 ‘ v—1 (v>-1) ]
Let x1, X2 € Q and f(x) =——So f(x1) =f(x2) — T_3= . _,.on solving we get = x1=X3
x—2 X1 x,—2
So f{x1]) = f(x2]) < x3= x3 f(x) is one-one
Given co-domain of f(x) is R - {1}
x—1 2y-1 .
Let yv = f(x) =»—2, Sox= V1 [Range of f(x) = Domain of y]
x— y—-

So Domain of y = Range of f(x) = R - {1}

Hence, Range of f(x) = co-domain of f(x) = R — {1}.
So, f(x) is onto function

Asitisa bijective function. So it is invertible

. 1 2)’_ 1
Invers of f(x) is F~(v) :—1
y—-



Question: 11
Solution: CLASSZ4
To Find: Inverseoffogand gof.

Given: f{x) = |x| +xand g(x) = |x| - x for all x R

fog(x)=1f(gx))=lgx)| +glx) =|lxl-x |+ x| -x

Case 1) when x>0

f(g(x)) = 0 (i.e. |x] - x)

Case 2) whenx< 0

f(g(x)) = -4x

go f(x) = g(f(x]]) = |6(x)] - £(x) = [[x] + x| - |x] -x

Case 1) whenx =0

g(t0d) = 0 (e |x| -]

Case 2) when x< 0

g(f(x))=0
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