Chapter : 27. STRAIGHT LINE IN SPACE CLASS24

Exercise : 27A

Question: 1

Solution:

Given: line passes through point (3, 4, 5) and is parallel to 2i + 2] — 3k
To find: equation of line in vector and Cartesian forms
Formula Used: Equation of a line is

Vector form:§ — 3 4+ Ab

XX, Yoy, _ Z-%

. L — —
Cartesian form: - = =A
h. ho h_

where 3 = x,1+y,j+ zlﬁ is a point on the line and}; — b,i+ b.j+ bsf{ is a vector parallel to the
line.

Explanation:

Here,3 — 3i + 4j + Skand b = 21  2j 3k
Therefore,

Vector form:

F = 31 +4j + 5k + (21 + 2j — 3k)
Cartesian form:

x—-3 y—-4 z-5
2 2 =3

Question: 2

Solution:

Given: line passes through (2, 1, -3) and is parallel ta ] — 2] + 3]1
To find: equation of line in vector and Cartesian forms

Formula Used: Equation of a line is

Vector form: f — 3 + Ab

N XTXy  ¥Y¥a o 27Ey
Cartesian form: |~ = = =2

where 3 = X, 1+y,j+ zlfc is a point on the line and | — b,i+b,j+ bBE is a vector parallel to the
line.

Explanation:

)

Here,§j21+i—3f{andﬁzi_21‘+3
Therefore,

Vector form:
t=2i+7-3k+A(i— 2]+ 3k)

Cartesian form:



Xx—2 y—1 z+3

1 -2 3 CLASS24

Question: 3

Solution:
Given: line passes through 2j + j— ckand is parallel toi + 3i— k
To find: equation of line in vector and Cartesian forms

Formula Used: Equation of a line is

Vector form: f = 3 + Ab

Cartesian form: ¥ _ ¥Y7¥1 _ 272, _ 4
b, b. by

where 3 = x,1+y,]+ 31E is a point on the line and | — b,i+b,j+ b;R is a vector parallel to the
line.

Explanation:

Here,d = 2i+j—5kand j =+ 3j — k
Therefore,

Vector form:

F=2i+j-5k+2a(i+ 3] k)
Cartesian form:

x—2 y—1 z+5

1 3 -1

Question: 4

Solution:

Given: line passes through 2 —j—4 lcand is drawn in the direction of j 4 = 2k
To find: equation of line in vector and Cartesian forms

Formula Used: Equation of a line is

Vector form:} = 3 + Ab

X=X Y ¥. _ CFEEe n
h h h

Cartesian form:

where 3 = x,i+y,j+ zlﬁ is a point on the line andB =b,i+b,j+ b:;f{ is a vector parallel to the
line.

Explanation:

Since line is drawn in the direction of 6 +j— fl-(), itis parallel to (1+j — 2[.'{)
}Iere-az2i—j—4l}_and6:i+j_2,
Therefore,

Vector form:

Cartesian form:

x—2 y+1 z+4
1 1 =2




Question: 5

. CLASS24
Solution:
Given: Cartesian equation of line
x—3gy+2Az—6
2 -5 4

To find: equation of line in vector form
Formula Used: Equation of a line is

—

Vectorform: ¢ = 3 4 )

. X=Xy y=¥y _ Z7F
Cartesian form: ——— == A

where 3 = x,i+y,]+ 211'2 is a point on the line and j = b,i+b,j+ bgf( is a vector parallel to the
line.

Explanation:

From the Cartesian equation of the line, we can find 3 and |y

Here, 3 = 31 — 2) + 6kand | = 3] — 5j + 4k

Therefore,

Vector form:

F=31-2j+ 6k +A(2i — 5] + 4k)

Question: 6

Solution:

Given: Cartesian equation ofline are 3x+1=6y-2=1-z

To find: fixed point through which the line passes through, its direction ratios and the vector
equation.

Formula Used: Equation of a line is

Vector form: ¢ — 3 4+ Ah

XX _ YN zE g

Cartesian form: 5 -

where 3 = x,T+y,]+2, k is a point on the line and |, — b1+ b+ bgﬁ is a vector parallel to the
line and also its direction ratio.

Explanation:

The Cartesian form of the line can be rewritten as:

1 1
X+§7y—§72—lik
I~ T
3 6

1 1
X+ 3 - 3 —
= 3:y 3:2 1:1

2 1 -6

»

Therefore,§=?i+éj+l:'.and[)'=2i+]~_6.

So, the line passes through (1

3 I) and direction ratios of the line are (2, 1, -6) and vector form

1
3
is:



f—:%lwéﬁlfwx(ziﬂfeﬁ) CLASS24
Question: 7

Solution:

Given: line passes through (1, 3, -2) and is parallel to the line

x+1 y—4 z+3
3 5  —6

To find: equation of line in vector and Cartesian form

Formula Used: Equation of a line is

—

Vectorform:7 — 3 + 3]

. XTXy _¥YT¥a o zTEy A
Cartesian form: b, b. b,

whered =x,i+y,]+ zllH( is a point on the line and; — b,i+ boj+ b3f< is a vector parallel to the
line.

Explanation:

Since the line (say Li) is parallel to another line (say L:), L: has the same direction ratios as that
of Lz

¥

Here,d =1+ 3j = 2k
Since the equation of Lz is

x+1 y—4 z+3
3 5 6

b = 3i + 5] — 6k

Therefore,

Vector form of the line is:
f=1+3]—2k+2(31 + 5] — 6k)
Cartesian form of the line is:

x—1 y—3 z+2

3 5 -6
Question: 8
Solution:

Given; line passes through (1, -2, 3) and is parallel to the line

Xx—-6 y—-2 z+7
3 -4 5

To find: equation of line in vector and Cartesian form

Formula Used: Equation of a line is

Vectorform: ¢ — 3 + Ab

. XX, _¥Y7TVa _ ZTTZy A
Cartesian form: b, o _bg

where 3 = x,1+y,j+ zlfz is a point on the line andE =b,i+b,j+ bsl‘{ is a vector parallel to the
line.



Explanation:

Since the line (say Li) is parallel to another line (say Lz), L1 has the same direction
of Lz

CLASS24

Here,i=1-2j+ 3k
Since the equation of .z is

XxX—6 y—2 z+7
3 -4 5

b = 3i— 4]+ 5k

Therefore,

Vector form of the line is:
F=1-2]+3k+A(31 4]+ 5k)
Cartesian form of the line is:

x—-1 y+2 z-3
3 -4 5

Queslion: 9
Solution:

Given: line passes through (1, 2, 3) and is parallel to the line

—-x—2 y+3 2z—6

1 7 3

o find: equation of line in Vector and Cartesian form

Formula Used: Equation of a line is

Vector form:¢ — 3 + Ah

X%y ¥Yo¥u -z,
: . It _Z "3
Cartesian form: b, - b,

where 3 =x,1+y,] + zll:( is a point on the line and ) — b,i+ b,j+ b;l-{ is a vector parallel to the
line.

Explanation:

Since the line (say Li) is parallel to another line (say Lz), L1 has the same direction ratios as that
of LZ

Here,3 =1+ 2j+ 3k
Equation of Lz can be rewritten as:

x+2 y+3 z—3

-1 7 3
2
x+2 y+3 z-3
=Y = =
-2 14 3

b=-2i+ 14j + 3k

Therefore,

Vector form of the line is:
F=1+2j+3k+A(-2i+14j + 3k)

Cartesian form of the line is:



x—1 y—-2 z-3

R PR CLASS24

Question: 10

Solution:

Given: line passes through (-1, 3, -2) and is perpendicular to each of the lines¥ = % = %and
2 _y-l_zrl

-2 2 =

To find: equation of line in Vector and Cartesian form

Formula Used: Equation of a line is

Vector form: f = 3 + Ab

Cartesian form: b, b. b

XXy Yy Vi 2%y 1
where § = x,T+y,] + zl':( is a point on the line andE =b,i+b,j+ b3l:I is a vector parallel to the
line.

If 2 lines of direction ratios aj:ag:az and b :bz:bs are perpendicular, thena b +azby+asbs=0
Explanation:

Here,3d = -1+ 3] — 2k

Let the direction ratios of the line be b;:by:bgz

Direction ratios of the other two linesare1:2:3and-3:2:5

Since the other two line are perpendicular to the given line, we have

by + 2by + 3bg =0

-3by +2by +5bs =0

Solving,

b, —b, by
IZ 31 |1 31 |1 2
2 5 -3 5 =3

b, b, bs
= — = = —

4 —14 B8

b, b, b,

- = -

2 -7 4

b=2i—7j+ 4k
Therefore,
Vector form of the line is:
= —i+3j—2k+A(21 — 7] + 4k)
Cartesian form of the line is:
x+1 y—3 z+2

2 -7 4

Question: 11

Solution:

Given: line passes through (1, 2, -4) and is perpendicular to each of the lines ? = y+:_9 = 2_710 and
—1a




x-15 y+29 z-5
3 8 -5

[o find; equation of line in Vector and Cartesian form
Formula Used: Equation of a line is

Vector form: f = 3 4+ Ab

et Y—vi 272, A
b, bs bs

Cartesian form:

CLASS24

whered =x,1+y,]+ 211'2 is a point on the line and ) = b,i+b,yj+ b3f< is a vector parallel to the

line.

If 2 lines of direction ratiosaj:ag:azand by:bs:bs are perpendicular, then ajbi+asbhs+azbsz =0

Explanation:
Here,i =1+ 2j - 4k

Let the direction ratios of the line be b;:by:b;

Direction ratios of other two lines are 8: -16: 7and 3: 8: -5

Since the other two line are perpendicular to the given line, we have

Bbl - 16[32 + 7b3 =0
3b; + 8by - 5b3 =0
Solving,
bl _b:t b]
]—16 71 |8 7 l h I8 —16|
8 -5 3 -5 3 8
b, b, b,
= —— = "=
24 61, 112

b =24i+61j+ 112k

Therefore,

Vector form of the line is:
f=1+2j—4k+A(24i+61j+ 112k)
Cartesian form of the line is:

x—1 y—2 z+4
24 61 112

Question: 12

Solution:

Given; The equations of the two lines are

x-4 y+3 z+1 x-1 y+1 z+10
= = and = =

1 4 7 2 -3 8

To Prove: The two lines intersect and to find their point ofintersection.

Formula Used: Equation of a line is

Vector form: § = 3 + b

X=X, _ y-vy _ 224

. L
Cartesian form: —— =77 = - =A

wherej = x i+y,j+ 211:5 is a point on the line and b : bz : bz is the direction ratios of the line.



Proof:
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x—4 y+3 z+1

1 4 7 L
x—1 y+1 z+10 A
2 -3 8 ~"*

So a point on the first line is (A4 + 4, 4A; — 3, 7A; — 1)
A pointon the second line is (235 + 1,-3A; - 1,83, - 10)
If they intersect they should have a common point.
M+ 4=2A+1 =R — 2A;=-3 ... (1)

47, ~3=-303 - 1=>4A; + 3A3 = 2 ... (2)

Solving (1) and (2),

114 =14

14
2T 1

A

Therefore, X, = :—f

Substituting for the z coordinate, we get

[ rs

A, - 1=-"and 8}, - 10 —
11 r

[
[

So, the lines do not intersect.
Question: 13
Solution:

Given: The equations of the two lines are

x—1 v-2 z-3 xX—+ v-—1
f— = — - c’.ll'ld - —
3 4 5 2

=7
i

(]

To Prove: The twa lines intersect and to find their point of intersection.
Formula Used: Equation of a line is

Vectorform:¢ = 3 + Ab

. X-Xy ¥ Vi _ 2%,
Cartesian form: — = = 7 = A

where 3 = x,1+y,j+ 7, k is a point on the line and b : bz : bs is the direction ratios of the line.

Proof:

Let

x—4 y—1
5 2 M

S0 a point on the firstline is (2A; + 1, 347 + 2, 44, + 3)

A point on the second line is (543 + 4, 245 + 1, A3]
If they intersect they should have a common point

2A +1=5Ay+4= 24 —5A3 =3 ... (1)



3AM+2=2A+1=3A -2 =-1..

Solving (1) and (2),
-1132=11
12 =-1

Therefore, A1 =-1

(2]

Substituting for the z coordinate, we get

4 +3=-land Az =-1

So, the lines intersect and their point of intersection is (-1, -1, -1)

Question: 14

Solution:

Given: The equations of the two lines are

x—1

-~

‘,-'-1
== =7 and
3

To Prove: the lines do not intersect each other.

Formula Used: Equation of a line is

Vector form:§ < 3 + Ab

X%, yoy,

. 1
Cartesian form: — =

X -

5

=

CLASS24

where 3 = X;1+y,j+ zlfc is a point on the line and bi : bz : bs is the direction ratios of the line.

Proof:
Let
x—-1 +1
:Lzz:,\l
2 3
x+1 y-2
=T =h2=2

So a point on the first line is (24 + 1, 3A3—1,2;)
A point on the second line is (5Az-1,A5+ 1, 2)

If they intersect they should have a common peoint
2ZAM{+1=5-1=2% -5 =-2..(1)

B3A - 1= +1 =30 -2=2..(2)

Solving (1) and (2),

-13A2=-10
A= 2
= 13

. 33
Iherefore, A, = —
[

Substituting for the z coordinate, we get

11:£andz=2

65

So, the lines do not intersect.

Question: 15



Solution: CLASSZ4

xX—-6 y-7 z-7

Given: Equation of line is

2

3 2

To find: coordinates of foot of the perpendicular from (1, 2, 3) to the line. And find the length of
the perpendicular.

Formula Used:

1. Equation of a line is

A x—x y-v z-2
Cartesian form: L= t = t=2
b, bs by

where 3 = X, i+y,j+ 211} is a point on the line and b1 : bz : ba is the direction ratios of the line.

2. Distance between two points (x4, y1, Z1) and (x3, y2, Z3) is

\/(Xx =X 2+ (y, -y P+ (2 —7)?

Explanation:

Let

X—6 y—7 z-—7
i 2 =2

So the foot of the perpendicular is (3A + 6, 2A + 7, -2A + 7)

=A

Direction ratio of the lineis 3:2:-2
Direction ratio of the perpendicular is

=S (BA+6-1):(2A+7-2):(-2A+7-3)
= ([3A+5):(2A+5): (22 +4)

Since this is perpendicular to the line,
33A+5)+2(2A+5)-2(-2A+4) =0
= 9A+15+4A+10+4A-8=0

= 17A=-17

= Ai=-1

So the foot of the perpendicularis (3, 5, 9)

Distance = \/(3 — D2+ (5-2)2+(9-3)2

~ VEt9136

= 7 units

Therefore, the foot of the perpendicular is (3, 5, 9) and length of perpendicular is 7 units.
Question: 16

Solution:

X-11 v+2 z+8

Given: Equation of line is .
1N 1 11

To find: coordinates of foot of the perpendicular from (2, -1, 5) to the line. And find the length of
the perpendicular.

Formula Used:



1. Equation of a line is CLAssz4

N x-x y-y z-z
Cartesian form: b t = b—l = h_i =2
1 2 3

where § =x,1+y,]+ zlﬁ is a point on the line and bi : bz : bs is the direction ratios of the line.

2. Distance between two points (x4, ¥1, 1) and (x3, y¥2, 23] is

\/(x:_x:)2+(Y1_Y2):+(31_32)2
Explanation:

Let

x—11 y+2 z+8
10 -4 -11

So the foot of the perpendicularis (10A+ 11,-4A-2,-11A - 8)

Direction ratio of the lineis10:-4:-11
Direction ratio of the perpendicularis

= (10A+11-2):(4A-2+1): (-11A-8-5)
= (10A + 9): (-4A- 1) : (-11A - 13)

Since this is perpendicular to the line,
10(10A +9) -4(-4A-1) -11(-11A- 13) =0
= 100A+90+ 16A+4 +121A + 143 =0
= 237A =-237

=A=-1

So the foot of the perpendicularis (1, 2, 3)

Distance — \/(1 —2)2+/(2+ 1)+ (3 —5)2
N
=14 units

Therefore, the foot of the perpendicularis (1, 2, 3) and length of perpendicular is V14 units.
Question: 17

Solution:

Given; line passes through the points (3, 4, -6) and (5, -2, 7)

To find: equation of line in vector and Cartesian forms

Formula Used: Equation of a line is

Vectorform:¢ = 3 + Ab

. X%, _ YV _ 7% A
Cartesian form: b, b b,

where § =x,1+y,j+ Zl}-( is a pointon the line and j = b,i+b,j+ bs}':: with b; : by : bz being the
direction ratios of the line.

Explanation:
Here,3 = 3i + 4j — 6k
The direction ratios of the line are (3 -5): (4 +2): (-6 - 7)

=-2:6:-13



=2:-6:13

CLASS24

—

So.b =2i— 6]+ 13k

Therefore,

Vector form:

I =31 +4] — 6k +A(2i — 6j + 13K)
Cartesian form:

Xx—3 y—4 z+6
2~ -6 13

Question: 18

Solution:

Given: line passes through the points (2, -3, 0) and (-2, 4, 3)
To find: equation of line in vector and Cartesian forms
Formula Used: Equation of a line is

Vector form: ¢ — 5 4+ Ab

. X—X, Y&y Z-%,
Cartesian form: = — = =A
K b, by

where 3 = X, T +Hy, )+ 21R is a point on the line and |, = b1+ byj+ bzf( with by: bs: bz being the
direction ratios of the line.

Explanation:

Here, 3 = 21 — 3j

The direction ratios of the line are (2 +2): (-3 - 4) : (0 - 3)
=4:-7:-3

=-4:7:3

So,b = —4i+ 7]+ 3k

Therefore,

Vector form:

F=2i—3)+A(-4i+7j+3k)

Cartesian form:

Xx—-2 y+3 z

—4 7 3

Question: 19

Solution:

n -

Given: line passes through the points whose position vectors are [ 1- 2] -+ l\) and (1 + 3] —EL)
To find: equation of line in vector and Cartesian forms
Formula Used: Equation of a line is

Vectorform: ¢ = 3 + Ab

Cartesian form: 1 _ ¥7¥1 _ Y
b, ba ba



where 3 = X, i+y 0+ zlﬁ is a point on the line andE =Db,i+b,j+ bgf{ with by :by:

direction ratios of the line.

Explanation:

Here,i=1-2j+k

The direction ratios of the line are (1 -1):(-2-3): (1 + 2)
=0:-5:3

=0:5:-3

So,b = —5j + 3k
Therefore,
Vector form:
F=1-2j+k+A(5] - 3k)
Cartesian form:

x—1 y+2 z-1
0o 5 -3

Question: 20

Solution:

" CLASS24

Given: line passes through the point (3, -2, 1) and is parallel to the line joining points B(-2, 4, 2)

and C(2, 3, 3).
To find: equation of line in vector and Cartesian forms
Formula Used: Equation of a line is

Vector form: ¢ — 5 + Ab

C . f Y _ yo¥, Z-%, _)
artesian form: b, e ba B

where 3 = x,1+y,] + zll.ﬂg is a pointon the lineand p — b,i+ bsj+ b:,}ﬂi with b : by : bz being the

direction ratios of the line.

Explanation:

Here,3 = 3i — 2j + k

The direction ratios of the line are (-2 - 2} : (4 - 3} : (2 - 3)
=-4:1:-1

=4:-1:1

—

So.b—4i-j+k

¥

Therefore,

Vector form:
F=31-2j+k+2(4i - j+ k)
Cartesian form:

x—-3 y+2 z-1

4 -1 1

Question: 21
Solution:

Given: line passes through the point with position vector | + 2f — 3k and parallel to the line joining

the points with position vectorsi —j + Lk and 2i+ 3j— 4k.
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To find: equation of line in vector and Cartesian forms
Formula Used: Equation of a line is

Vectorform: ¢ — 3 + Ab

X-xy Y-Vi _ Z7Z%4 A

b, b, by

Cartesian form:
where 3 = X1i+Y1i+ZLR is a point on the line and | — b,i+b,j+ b}]} with b; : by : by being the
direction ratios of the line.

Explanation:

Here,i =1+ 2j— 3k

The direction ratios of the line are (1 -2):(-1-3):(5 + 4)

=-1:-4:9

=1:4:-9

So.b =i+ 4j—9k

Therefore,

Vector form:

F=1i+2j—3k+A(i + 4j— 9k)

Cartesian form:

2

x—1 y—2 z+3
1 4 -9

Question: 22
Solution:

Given: perpendicular drawn from point A (1, 2, 1) to line joining points B (1, 4, 6) and C (5, 4, 4)

To find: foot of perpendicular
Formula Used: Equation of a line is
Vectorform: 7 =3 + }\B

. X Y—¥1 ETEL
Cartesian form: | — = = =2

where 3 = X, i+y,j+ zlf( is a point on the line and j = b,i+Db,j+ be( with by : by : bz being the
direction ratios of the line.

If 2 lines of direction ratios aj:agz:az and by:bj:bs are perpendicular, then a;by+asbyt+azbz =0
Explanation:

B (1, 4, 6) is a point on the line.

Therefore, 3 =1 + 4+ 6k

Also direction ratios of the lineare (1-5): (4 -4):(6 - 4)

=-4:0:2

=-2:0:1

So, equation of the line in Cartesian form is



Xx—1 y—4 z-6

-2 0 A CLASS24

Any point on the line will be of the form (-2A + 1,4, A + 6)

So the foot of the perpendicular is of the form (-2ZA + 1, 4,A + 6)

The direction ratios of the perpendicular is

(-2A+1-1):(4-2):(A+6-1)

= (-2A):2:(A+5)

From the direction ratio of the line and the direction ratio of its perpendicular, we have
22(-2A)+0+A+5=0

= 4A+A=-5

=A=-1

So, the foot of the perpendicular is (3, 4, 5)

Question: 23

Solution:

Given; perpendicular drawn from peint A (1, 8, 4) to line joining points B (0, -1, 3) and C (2, -3, -1)
[o find; foot of perpendicular

Formula Used: Equation of a line is

Vector formipf = 3 + Ab

. B <1 YoV =T E 3
Cartesian form: — =° = . =4

where 3 = x,i+y,j+ 211} is a point on the line and | = b,i+bsj+b k with b : bs: bz being the
direction ratios of the line.

If 2 lines of direction ratios aj:as:as and by:b;:bs are perpendicular, then a;by+asby+asbz =0
Explanation:

B (0, -1, 3) is a point on the line.

Therefore, 3 = —j+ 3k

Also direction ratios of the line are (0 -2) : (-1 +3): (3 + 1)

=-2:2:4

=-1:1:2

So, equation of the line in Cartesian form is

X y+1 z-3

—1 1 2
Any point on the line will be of the form (-A, A -1, 2A + 3)

-2

So the foot of the perpendicular is of the form (-A, A - 1, 2A + 3)

The direction ratios of the perpendicular is

(-(A-1):(A-1-8):(2A+3-4)

=(A-1):(A-9):(2A-1)

From the direction ratio of the line and the direction ratio of its perpendicular, we have

A(A-1)+A-9+2(2A-1)=0



SA+1+A-9+4A-2=0

= 6A =10

-5
.

So, the foot of the perpendicular is ( ;

Wt
w[[;
~—

Question: 24

Solution:

X + 3
Given: Equation of line is —— == =

To find: image of point (0, 2, 3)
Formula Used: Equation of a line is
Vector form: f = 3 + Ab

x-X, i T s A

h_ h_ h_

|

Cartesian form:

CLASS24

where 3 = X, i+y,j+ zl}n( is a point on the line and | — b,i+Db,j+ bsf\- with bj : by : by being the

direction ratios of the line.

If 2 lines of direction ratios aj:as:as; and b:by:by are perpendicular, thenayb;+asbs+azbz=0

Mid-peint of line segment joining {xl- Y. Zl) and (XEJ Y2 Zz) is

(x1+.\;2 Vity. 2, ‘th)
2 2 2
Explanation:
Let
x+3 y—-1 z+4

5 2 U

So the foot of the perpendicular is (54— 3, 2A + 1,3\ —4)

The direction ratios of the perpendicular is
(5A-3-0):(2A+1-2):(32A-4-3)
=BA-3):(ZA-1): (32 -7)

Direction ratio of the lineis 5 :2 : 3

.(0,2,3)
° ]

Tl+3 y—1 z4+14
T 5 2 3
|

I

|

I

®a .y



From the direction ratio of the line and the direction ratio of its perpendicular, we h
5(5A-3)+2(2A-1)+3(3A-7)=0

=250 -15+4A -2+9A-21=0

= 3BA =38

=A=1

So, the foot of the perpendicularis (2, 3,-1)

The foot of the perpendicular is the mid-peoint of the line joining (0, 2, 3) and (a, (3, ¥)

So, we have

a+0 2 4

2 7%=

+ 2 3 4
- = = =

> B

+ 3
YT:_I:’Y: -5

So, the image is (4, 4, -5)
Question: 25

Solution:

X
Given; Equation of line is
A

To find: image of point (5,9, 3)

Formula Used: Equation of a line is

Vector form:¢ = 3 + Ab

X=X, _ ¥V

h e

Cartesian form:

CLASS24

where d = x,T+y;]+ zl}A{ is a point on the line and |, — b,i4 b,j+ b;f( with by : by : by being the

direction ratios of the line.

If2 lines of direction ratios aj:aj:az and by:bs:b3 are perpendicular, thenaby+azby+azbz=0

Mid-point of line segment joining (*1* ¥1s z;) and (xy, vy 23] is

(-“1 X yyty: &t Zz)
2 2 "2

Explanation:

Let

x-1 y-2 z-3
2 3 4

=X

So the foot of the perpendicularis (22 + 1,32 + 2,44 + 3)
The direction ratios of the perpendicular is

2A+1-5):3BA+2-9:(4A+3-3)

= (2A-4): (3A-7): (4})

Direction ratio of the lineis 2 : 3 : 4
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From the direction ratio of the line and the direction ratio of its perpendicular, we have
2(2ZA-4)+3(BA-7)+4(4) =0

=4A -8+ 9A-21 +16A =10

= 29A =29

=A=1

So, the foot of the perpendicular is (3, 5, 7)

The foot of the perpendicular is the mid-point of the line joining (5,9, 3) and («, 3, v)

So, we have

a+5 3 .
7 = ==
B+9

2 =5=08=1
+3
YT:7:’Y: 11

So, the imageis (1,1, 11)

Question: 26

Solution:

Given: Point (2, -1, 5)

Equation of line = (111 —2j—8k) + A (101 — 4] — 11k)

ma=al il x+2 x+8
= =—=r
—4 —-11

The equation of line can be re-arranged as
The general point on this line is

(10r + 11, -4r — 2, -11r - 8)

Let N be the foot of the perpendicular drawn from the point P(2, 1, -5) on the given line.
Then, this pointis N{(10r + 11, -4r — 2, -11r - 8) for some fixed value of r.

D.r.’s of PN are (10r + 9, -4r- 3, -11r- 3)

D.r.'s of the given line is 10, -4, -11.

Since, PN is perpendicular to the given line, we have,

10(10r +9)-4(-4r-3)-11(-11r-3) =0

100r+90+ 16r+12+ 121r+33 =0

237r=135



r—=
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Then, the image of the pointis

a—11 B+2 1y+8
-1 7 79 T

1

Therefore, the image is (0, 5, 1).

Exercise : 27B

Question: 1

Solution:

Given -

A=(2,13)

B = (5.0.5)

C=(-4.3,-1)

To prove - A, B and C are collinear

Formula to be used - [f P = (a,b,¢) and Q = (a'.,b’,c’).then the direction ratios of the line PQ is
given by ((a’-a).(b’-b).{c’-¢))

The direction ratios of the line AB can be given by
((5-2).(0-1},(5-3))

=(3.-1.-2)

Similarly, the direction ratios of the line BC can be given by
((-4-5).(3-0).(-1-5))

=(-9,3.-6)

Tip - If it is shown that direction ratios of AB=A times that of BC ,where A is any arbitrary
constant, then the condition is sufficient to conclude that points A, B and C will be collinear.

So,d.r. of AB

=(3.,-1,-2)

=[-1/3)X(-9,3,-6)

=[-1/3)Xd.r. of BC

Hence, A, B and C are collinear

Question: 2

Solution:

Given -

A=(23,-4)

B=(1.-2,3)

C=(3.8.-11)

To prove - A, B and C are collinear

Formula to be used - IfP = (a,b,c) and Q = (a',b’.c'),then the direction ratios of the line PQ is
given by ((a’-a).(b’-b).(c’-c))

The direction ratios of the line AB can be given by



((1-2).(-2-3}.(3+4])
=(-1,-57) CLASS24
Similarly, the direction ratios of the line BC can be given by

((3-1),(8+2),(-11-3))

=(2,10,-14)

Tip - If it is shown that direction ratios of AB=A times that of BC, where A is any arbitrary
constant, then the condition is sufficient to conclude that points A, B and C will be collinear.

So,d.r. of AB

=(-1,-5.7)

=(-1/2)X(2,10,-14)

=[-1/2)Xd.r. of BC

Hence, A, B and C are collinear

Question: 3

Solution:

Given -

A=(2,51)

B=(1.2-1)

C=(3.03)

To find - The value of A so that A, B and C are collinear

Formula to be used - If P = (a,b,c) and Q = (a',b',c');then the direction ratios of the line PQ is
given by ({a’-a).(b’-b).(c'-¢))

The direction ratios of the line AB can be given by
((1-2).(2-5).(-1-1))

=(-1,-3,-2)

Similarly, the direction ratios of the line BC can be given by
((3-1).(3-2).(3+1))

=(2,A-2,4)

Tip - Ifit is shown that direction ratios of AB=«a times that of BC, where A is any arbitrary
constant, then the condition is sufficient to conclude that points A, B and C will be collinear.

So,d.r.of AB
=(-1,-3,-2)
=(-1/2)X(2,A-2,4)
=(-1/2)Xd.r. of BC

Since, A, Band C are collinear,

1
a75072)=*3
2A—2=6
=>A=8

Question: 4

Solution:



Given -

A=1(3.2,-4) CLAssz4
B=(9,8.,-10)

C=(An-6)

To find - The value of A and p so that A, B and C are collinear

Formula to be used - If P = (a,b,c) and Q = (a’,b’,c’),then the direction ratios of the line PQ is
given by ((a’-a).(b’-b).(c’-c))

The direction ratios of the line AB can be given by
((9-3).(8-2),(-10+4))]

=(6,6,-6)

Similarly, the direction ratios of the line BC can be given by
((A-9).(1-8).(-6+10))

=(A-9,p-8,4)

Tip - Ifit is shown that direction ratios of AB=« times that of BC, where A is any arbitrary
constant, then the condition is sufficient to conclude that points A, B and C will be collinear.

So, d.r.of AB
=(6,6,-6)
=(-6/4)X(-4,-4,4)
=(-3/2)Xd.r. of BC

Since, A, Band C are collinear,

3
==;(A-9) =6
2A-9=-4
=>A=05
And,

3
-'-—E(LI—S):G
spu—8=—-4
=D A=4

Question: 5

Solution:

Given -

A=(-1,4.-2)

B=(Awnl)

€=(0,2,-1)

To find - The value of A and p so that A, B and C are collinear

Formula to be used - If P = (a,b,c]) and Q = (a’,b’,c’),then the direction ratios of the line PQ is
given by ((a’-a).(b’-b).(c’-c))

The direction ratios of the line AB can be given by



((A+1).(1-4).(1+2)) CLASS24

=(A+1,11-4,3)

Similarly, the direction ratios of the line BC can be given by
((0-AL(Z-p)(-1-1))

=(-A2-11.-2)

Tip - Ifit is shown that direction ratios of AB=«a times that of BC, where A is any arbitrary
constant, then the condition is sufficient to conclude that points A, B and C will be collinear.

So,d.r.of AB

=(A+1,1-4,3)

Say, o be an arbitrary constant such thatd.r.of AB=a X d.r.of BC
So,3=aX(-2)

le.a=-3/2

Since, A, Band C are collinear,

3
.-.—E(—A):A+1
= 3A=2A+2
DA =2
And,

3(2 ) 4
- > ) =u

= —6+3uL=2L-8
> p=-2

Question: 6

Solution:

Given -
A= —4i+2j—3k

i+3j—2k

[==14
Il

C=-91+j—4k

It can thus be written as:

A= (-4,2,-3)
B = (1,3,-2)
€=(-91,-4)

To prove - A, B and C are collinear

Formula to be used - If P = (a,b,c) and Q = (a'.b’.c’).then the direction ratios of the line PQ is
given by ((a’-a).(b’-b).(c’-c))

The direction ratios of the line AB can be given by
((1+4).(3-2),(-2+3])
=(5.1.1)

Similarly, the direction ratios of the line BC can be given by



((-9-1).(1-3}.(-4+2])

=(-10,-2,-2)

CLASS24

Tip - If it is shown that direction ratios of AB=A times that of BC, where A is any arbitrary
constant, then the condition is sufficient to conclude that points A, B and C will be collinear.

So, d.r. of AB
=(5.1.1)
=(-1/2)X(-10,-2,-2)
=(-1/2)Xd.r. of BC

Hence, A, B and C are collinear

Exercise

Question: 1

Solution:

Given - L[ = (3i+j— 2k) + A(i — - 2k)
&1L, = (2i - - 5k) + n(3i - 5] — 4k)

To find - Angle between the two pair of lines
Direction ratios of L. = (1,-1,-2)

Direction ratios of Lz = (3,-5,-4)

:27C

Tip - If (a,b,c) be the direction ratios of the first line and (a’,b’,c’) be that of the second, then the

angle between these pair of lines is given by cgg !

The angle between the lines

CfIx3+(1)x (-5 + (2 x(—4)
=cos™! — '
V1T4 12+ 2232+ 52 + 42

o (3 +5+ 8)
= C0s —
V650

=cos™?! (i)
5Vev2

(803

= CO0S —_—
15

Question: 2

Solution:

Given - L, = (3i— 4] + 2k) + A(i + 3k)

&L, =D +p(-i+j+k)

To find - Angle between the two pair of lines

Direction ratios of L, = (1,0,3)

Direction ratios of Lz = (-1,1,1)

axa +bxbh'+exc’

v a~+b3+c "\;:1“+h“+c’“



Tip - If (a,b,c) be the direction ratios of the first line and (a’,b’,c’) be that of the sect

angle between these pair of lines is given by cgs !

The angle between the lines

1( Ix(-1)+0x1+3x1 )
= C0Ss
VIZ+02+32V12 + 12+ 12

_ Cos‘l(_l +3)

V10v3

2
=cos! (—)
V30

Question: 3

Solution:

Given -T, = (i— 2] + A(2i — 21+ k)

&L, = (3k) +u(i +2j — 2k)

To find - Angle between the two pair of lines
Direction ratios of L1 = (2,-2,1})

Direction ratios of Lz = (1,2,-2)

CLASS24

r ’ !
axa +bxb +cxc

—

—— z 2 2
yat+bZ4c? x\Ja' +b' 4

Tip - If (a,b,c) be the direction ratios of the first line and (a’,b’,c’) be that of the second, then the

angle between these pair of lines is given by cgs=!

The angle between the lines

_1(2x1+(—2)x2+1x(—2))
= C0s
V22 +22+ 1512 + 2% + 2°

2—4-2
=cos™?! (7)

Ix3

4
— -1 _
= cos ( 9)

Question: 4

Solution:
s - x-1 -4 Z—3
Given -1, = e
. . -
— x+3 y=2 Z+3
&L, =~ = ="

3 5 4
To find - Angle between the two pair of lines

Direction ratios of L: = (1,1,2)

Direction ratios of Lz = (3,5.4)

r ) !
axa +bxb +cxc

ey o 2 2 £
v a- +b=+e- x.\"-a’ +b/ el

Tip - If (a,b,c) be the direction ratios of the first line and (a’,b’.c’) be that of the second, then the



angle between these pair of lines is given by ¢gg~!

The angle between the lines

= Ccos

( 1x3+1x5+2x4 )
VIZ+12+22V32 + 57 + 42

3+5+8
=cos | ——=
V6 x50

— cos-1 8v3
=cos™H

Question: 5

Solution:

Given —f; = —

-1 1

-
i

&7 = X3 ¥ _ 23
1

To find - Angle between the two pair of lines
Direction ratios of Ly = (4,3,5)

Direction ratios of Lz = (1,-1,1)

axa' +bxb'+oxc’ CLAssz4

|rr3

TR 2z 2
vat+biac? x ja" b T

Tip - If (a,b,c) be the direction ratios of the first line and (a’.b’,c’) be that of the second, then the

angle between these pair of lines is given by cos ™!

The angle between the lines

4X1+3x(—1)+5x1 °

=cos™?! —1 :
VA2 +32+ 5212 + 12 + |-
_1(4—3+5)

= C0Ss —
52 %3

6
= cos"(—,_)
5ve

_1 Z\f'rg
= CO0S 15

Question: 6

Solution:
. — x—3 +5  z—1
Given -1, = = _ye i
- s -

—

T
3

=]

To find - Angle between the two pair of lines
Direction ratios of L1 = (2,1,-3)

Direction ratios of Lz = (3,2,-1)

o
a«a +bxb +exe

yvaT+b=+c \4\;3"+h’_+c’_

Tip - If (a.b,c) be the direction ratios of the first line and (a’,b’,c’) be that of the second, then the



angle between these pair of lines is given by ¢gg~! axa’ +bxb' vexd! CLAssz4

TR 242, 2
Vat+bi4c? era"+b’ +c’

The angle between the lines

l(2><3+1><2+(3}><(1))
= C0s
V22 + 17+ 3232+ 22 + 12

4(6+2+3)
= C0Ss —_—
V1 x 14

=cos™! (E)
14

Question: 7

Solution:

. — X z
Given - L, = :%': -
&L, = X_Y¥_Z

b 3 4 5

To find - Angle between the two pair of lines

Direction ratios of Li = (1,0,-1)

Direction ratios of Lz = (3,4,5)

Tip - If (a,b,c) be the direction ratios of the first line and (a’,b’,c’) be that of the second, then the

r ) '
angle between these pair of lines is'given by cgg ! 2 _37+b-.t.: fene

The angle between the lines

_1( 1x34+0x44+4( 1)x5 )
= C0s
VIZ4 02 + 17437 + 47 + 5°

cos“(gz%figji)

1
= e
cos (S)

Question: 8

Solution:
. - X-5 y43 z-5
Given -1, = —="—F=—
— x-1 y-1 z-5
&L, = "—— ="
“ 1 -3 2

To find - Angle between the two pair of lines

Direction ratios of L1 = (-3,-2,0)

Direction ratios of Lz = (1,-3.2)

Tip - If (a,b,c) be the direction ratios of the first line and (a’,b’,c’) be that of the second, then the

r I r
axa +bxb +ecxc

[ZavzZa II,E 1z, g2
\.-a~+b~+c~xqa +b' "+

angle between these pair of lines is given by cos—!

The angle between the lines



(3 x1+(=2)x(=3)+0x2
- ( V3T+ 22+ 0212 +32 + 22 ) CLASSZ4
—3+6 )
V13 x V14

= cos“(

= COS r—
V182
Question: 9

Solution:

Given—f;:‘ =21 -_

o = M _y-h_zes

-
“ 2 4 2

To prove - The lines are perpendicular to each other

Direction ratios of L1 = (2,-3,4)

Direction ratios of Lz = (2,4,2)

Tip - If (a,b,c) be the direction ratios of the first line and (a’,b’,c’) be that of the second, then the

ol il s e
angle between these pair of lines is given by ¢gg-1| - & ‘oxbiexe

BT Y P
v AT FDT 4 L] +b" "4
\

The angle between the lines

_1( ZX2+(-3)x4+4dx2 )
=Cco
V2Z+37 + 4222 $ 42 ¢ 2°

4—1248)

=cos™? (7
\.@X \,‘rﬁ-

Hence, the lines are perpendicular to each other.

Question: 10

Solution:

Given—fi': — = =

-3 ZA 2
— x—1 -1 z2—6
&L, ===
“ 7 1 -5

To find - The value of A

Direction ratios of L1 = (-3,2,2)

Direction ratios of Lz = (3A,1,-5)

Tip - If (a,b,c) be the direction ratios of the first line and (a’,b’,c’) be that of the second, then the

r ! !
angle between these pair of lines is given by ¢cgs ! axa +bxb +exe

—_—
Ty N
vat+biic® xJa +b'" 4
Since the lines are perpendicular to each other,

The angle between the lines



- 1( (—3)x31+2Ax1+2x(—5)) T
COos =

S+ (2 + 22 B 12458/ 2

—9A+2X1—-10 )_Ir

= cos’l( -
V13 + 42292 + 26/ 2

. —7A—10 n
= COS§ ( ; = )z —
V13 + 4A2V9A2 + 26 2
—7A-10 ™
( ) =cos—=10
V13 + 4A2\9A% + 26 2

o —-7A-10=10

10
7

Question: 11

= A=

Solution:

. — X A
Given - L, = :=i_'::
&—' _ x#2 _y—lj-rz _ =1

27 2 T T

To prove — The lines are perpendicular to each other
Direction ratios of L, = (2,-2,1)

Direction ratios of Lz = (2,1,-2)

CLASS24

Tip - If (a,b,c) be the direction ratios of the first line and (a’,b’,c’) be that of the second, then the

angle between these pair of lines is given by cgg 1

r
axa +bxb sexc’

Bl | 2 2
vaTtbi+c x fa' T +b T

The angle between the lines

_1(2x2+(—2)><1+1>c(—2))
=C0 =
V22 4+ 224 1212+ 12 + 22

4(4—2—2)
=cos|{——
V29 x 24
= cos™{0)

14
T2

Hence, the lines are perpendicular to each other.

Questlion: 12

Solution:

(i) : Given - Direction ratios of L1 = (2,1,2) & Direction ratios of L. = (4,8,1)

To find - Angle between the two pair of lines

Tip - If (a,b,c) be the direction ratios of the first line and (a’,b’,c’) be that of the second, then the

angle between these pair of lines is given by ¢gs—!

r ’ !
axa +bxb +cxc

The angle between the lines

——
= % = 2 2 2
yat+bZ4c? xJa’ +b' 4’



-1

= Co0s

CLASS24

2x4+1x8+2x1 )
V2Z+ 1242242+ 82 +12

oS 3x9

(
1(8+8+2)
= cos ‘( )

2
=cos! (—)
3

(ii) : Given - Direction ratios of Ly = (5,-12,13) & Direction ratios of Lz = (-3.4,5)
To find - Angle between the two pair of lines
Tip - If (a.b,c) be the direction ratios of the first line and (a’,b’,c’) be that of the second, then the

axa’ +bxb +exc’

angle between these pair of lines is given by gg~!

_ s 2 =
vaZ+bI+c2 xvla’ +b' "+’

The angle between the lines

o (5 X(—3)+(—12) x4+13 % 5)
=cos 5 o T ]
VEZH 122+ 132y/32 + 42 + 52

o (—15 — 48 # 65)
= C0s ——
13v2x 52

(iti) Given - Direction ratios of L, = (1,1,2) & Direction ratios of Lz = (_\/3 1,-v3-1 A
To find - Angle between the two pair of lines
Tip - If (a,b,c) be the direction ratios of the first line and (a’.b’c’) be that of the second, then the

’ ' '
axa +bxb +cxc

angle between these pair of lines is given by ¢gs !

- M. - -
VaZ+bZ4e? x fa T4’ 4"
The angle between the lines
N Ix(V3i-1)+1x(-V3-1)+2x4

m\](\@—i)%(—\@—x)zﬂz

= C0s

Vi—-1—-+vV3-1+8
=cos !
Vev2a

(iv) Given - Direction ratios of L, = (a,b,c) & Direction ratios of Lz = ((b-c).(c-a).(a-b])

To find - Angle between the two pair of lines

Tip - If (a,b,c) be the direction ratios of the first line and (a’,b’,c') be that of the second, then the
axa’ +bxb/+oxc’

|| 2 2 2
r i’b’ r

vaZ+bZ+c® xa +c

angle between these pair of lines is given by ¢gg~!



The angle between the lines
CLASS24

_1( ax(b—c)+bx(c—a)+cx(a—Db) )
= cos
Va? +bZ +c2f(b-c)*+ (c—a)?+(a—Db)?

0
:cos“( )
Vaz+b2 +c2/(b— )2+ (c—a)2 + (a—Db)?

= cos *(0)

Question: 13

Solution:
Given -
A=(12.3)
B = (4,5.7)
C=(-4.3.-6)
D=(2.9.2)

Formula to be used - If P = (a,b,c) and Q = (a',b’,c’),then the direction ratios of the line PQ is
given by ((a’-a),(b’-b).(c'-c))

The direction ratios of the line AB can be given by

((4-1).(5-2),(7-3))

=(3,3.4)

Similarly, the direction ratios of the line CD can be given by

((2+4).(9-3).(2+6))

=(6,6,8)

To find - Angle between the two pair of lines AB and CD

Tip - If (a,b,c) be the direction ratios of the first line and (a’,b’,c’) be that of the second, then the

. L
angle between these pair of lines is given by cos ! AR B e

(220077 2 x |22 eb/ T4’
yat4bT+c® x (2 " +b T 4c

The angle between the lines

71( 3X6+3x6+4%x8 )
C
V37 + 32+ 42767 + 67 + 82

_1(18+ 18+32)
= Cos

V34 x 24/34
68
— -1
=08 (2 x 34)
=cos 1
-0

Exercise : 27D

Question: 1



Solution: cLAss24

Given equations :
r=@{+])+A2i-7+k)
r=(21+j—k)+ n(3i- 5j + 2k)
To Find :d

Formula :

1. Cross Product:

If3 & b are two vectors
a=a,it+aj+ a;fc

b =b,i+b.j+bsk

then,

The shortest d : *1 + lb_:i ang
T =&, + Ab,is give

2 2

g |Grxb) (& -
|b, x b,|

Answer:
For given lines,
t=({+{)+A2i-j+k)

r=(20+j— k) + u(3i— 5] +2k)

Here,

a =i+]j
b,=2i-j+k
L =2i+]-k

b, =3i- 5]+ 2k

Therefore,

[ R B

by xb,=[2 -1 1
3 -5 2




I
=i(-2+5)—j(4—3) +k(-10+3) CLASS24

2by, xb,=31-j-7k

w [y x by = 32+ (=12 +(-7)?
=V9+1+49

=59
L-a=02-1Di+(1-1)j+(-1-0k

s34 -a =1+0j-k

Now,

(b, xb;). (a2 —a) = (381 -j-7Kk).(i+0j - &)
=@x D)+ ((—1)x0) +({(-7)x(-1))

=3+0+7

=10

Therefore, the shortest d

Formula :
1. Cross Product :

Ifa & B are two vectors

a=a,i+a,j+azk

b =b,i+b,j+bsk

then,
I L
axb=|a, a, a;
by by by

2. Dot Product:

1f3 & b are two vectors

-

a=a,i+a,j+azk




|
ab=(a;xby)+(a;xby)+ (a; x by) CLAssz4

3. Shortest distance between two lines :

Answer:

For given lines,

r=(-4i+4+k) +A(i+j-k)
t=(-31-8 —3k) +p(2i + 3+ 3k)
Here,

I, =-4i+4+k

b, =1+j-k

i =—-3i—8]—3k

b, = 2i+ 3]+ 3k

Therefore,

Now,
(byxb;). @3z —a) = (i
=(6x1)+ ((-5)x(-12)
=6+60-4

=62

Therefore, the shortest distance between the given lines is

o (1% b2) @ —ap)
I |b1><b2]

62 |
V62
d = 62 units

Question: 3

.‘.d:]




Solution: CLASS24

Given equations:
t=(i+2j+3k) +A(i- 37+ 2k)
Tt = (41 +5] + 6k) + p(2i + 3j + k)
ToFind:d

Formula :

1. Cross Product :

If3 & b are two vectors

2. Dot Product:

1If3 & b are two

g |Cexba).G
|b, x b, |

Answer:

For given lines,
r = (i+2j+3k) +A(i—3j + 2k)
= (41 +5]+ 6k) + p(2i+ 3] + k)
Here,

a, =i+ 2j+3k

=1-3j+2k

A

= 4i + 5 + 6k

o
=]

b, =2i+3j+k

Therefore,

R U B

by xb, =1 -3 2
2 3 1




l
=i(-3—-6)—j(1—4) +k(3+6) CLASS24

= by xb, = -9 + 3] + 9k

o [byxby| = (=9)7 + 37 + 97

=V81+9+81

= V171

L-a,=(4-1i+6G-2)j+6-3)k

23— & =31+37+3k

Now,

(b, xb,).(@a; —a;) = (-9i +3j + 9k) . (31 + 3f + 3k)

=((—9)%x3)+(3x3)+(9x3)
=-27+9 + 27

=9

Therefore, the shortest d

Question: 4
Solution:
Given equations :
r=(+2j+k)+Ai-7+k
t=(2i-j—k)+p(2i+7+2k)
ToFind:d

Formula :

1. Cross Product:

If3 & b are two vectors

a=a,i+a,j+a;k
b =byi+b,j+byk
then,

i j k
d; dz d3
by by by




2. Dot Product:

CLASS24

If3 & b are two vectors

a.b=(a; xb,)+ (a; xb,)+ (agxby)

3. Shortest distance between two lines :
The shortest distance between the skew linesT = 3; + )LE and
T = I, + Ab,is given by,

(b, xb,).(a3; - &)
by x b,

|

For given lines,

F=(+2j+k)+A(i—j

Here,
3, =1+ 2]+
b =i-j
a=2-]
by, =2i+]
Therefore,
1
b; xb, =1

L-a,=02-1i+(-1-2)j+(-1-1k

sa —a =1-3]- 2k

Now,

(b, xb,).(a; —a) = (—3i+0j+3k).(i— 3] — 2k)
=((=3)x D)+ (Ox(=3)+ Bx(-2))
=-3+0-6

=-9




Therefore, the shortest distance between the given lines is

4 |(Brxbs) (3, —ay)

CLASS24

by x by

a2
R EWG;
.d_ 3
rd=—

3v2
432

2

Question: 5
Solution:

Given equations :

t = (i+2j—4k)+A(2i+ 3+ 6k)

-

= (31 + 3] — 5k) + p(—2i + 3j + 8k)
ToFind :d

-

Formula :
1. Cross Product :

1f3 & b are two vectors
d=a,i+ata

b =b,i+b,j+byk

then,
7k
axb=la, a, a;
b, b, by

2. Dot Product:

If3 & b are two vectors

a.b=(a; xb;)+(a, x by) + (ag x by)

3. Shortest distance between two lines :

The shortest distance between the skew linest = a + )‘b_l and
r=a,+ Rb_:is given by,

4 |(Brxb:) (@ - &)
|b1xb2|

Answer:
For given lines,

F=(1+2]—4k) + A(2i+ 3) + 6k)



t = (3i+ 3] — 5k) + p(—2i + 3j + 8k)

i =3i+3j- 5k

b, = —2i+3j+8k

Therefore,

|1 ik

b;xb,=]2 3 ¢
-2 3 8

=i(24—18) —j(16 + 12) + k(6 — 6)

d = —— units

V820

Question: 6
Solution:

Given equations:

F = (61 +3k) + A(21 — ]+ 4k)

t= (-9 +j- 10k) + p(4i +7 + 6k)

To Find:d
Formula :

1. Cross Product :

CLASS24




If3 & b are two vectors

CLASS24

a=a,i+a,]+azk

b =b,i+b,j+bsk

then,
otk
ixb=la, a, a,
by Dby by

2. Dot Product:

If3 & b are two vectors

-~

a=a,i+ajtazk
b =b,i+b.j+bsk

then,

ab=(a;xb;)+(a,xb,)
3. Shortest distance be

The shortest distance be

T = a, + Ab.is giv

r= (6143
T =
Here,

i = -9i+j— 10k

b, = 4i+j+6k

Therefore,

S S I

by xb,=2 -1 4
4 1 6

=i(—6—4)—j(12—16) + k(2 +4)

~b, xb, = —10i + 4] + 6k

= |b; xby| = /(~10)2 + 42 + 62
=100 + 16 + 36

= V152
L-a,=-(-9-6)i+(1-0)j+(6—3)k

-3 —a; = —-151+7+3k




Now,

CLASS24

(b, xb,).(a; —a,) = (—10i + 4j + 6k) .(—151 +]j + 3k)
=((-10)x (—15)+ (4 x 1)+ (6 x 3)

=150+ 4 + 18

=172

Therefare, the shortest distance between the given lines is

_|(by xby) (3 - &)

d= =7 -
[ [byxDby,]

172
V152
172

a-|

86 .
d = —— units

V38

Question: 7

Solution:

To Find :
Formula :
1. Cross Produ

1f3 & b are two vectors

-~

a=a,i+a,j+azk
b =b,i+b.j+bsk

then,

~ i j k
axb=la, a, a,
b, b, by

2. Dot Product:

If3 & b are two vectors

-~

a=a,i+a,]+azk

b = b,i+b,j+ bk

then,

ab=(a;xby)+ (2 x by)+ (az x by)

3. Shortest distance between two lines :




The shortest distance between the skew linest = a, + )Lb_l and

|
T CLASS24
(b xb) (3, - &)

d= =7 =
I |b1szl

Answer:

Given lines,

F=(3-0i+ 4+ 20j+ (t—2)k
F=(1+s)i+(3s—7)j+ (2s—2)k
Above equations can be written as

F=(31+4]—2k) +t(—1+ 2j+ k)

= by x by | =
=V1+9+25
=35
,-a,=(1-3)i+ (-7 -4
23 —a; = -2i-11j+ 0k
Now,

(b; xb,).(a; —a,) = (i+ 3j— 5k) . (—2i — 11] + 0k)
=(1x(=2))+Bx (-11)) + ((-5)x 0)
=-2-33+0

=-35

Therefore, the shortest distance between the given lines is

g |©xb:) G -a)
I |b1><bz|
,]‘_35|
NS

~d=+35




d = V35 units CLAssz4

Queslion: 8

Solution:

Given equations :
F=(—1i+A+1)j— (A+ 1)k
F=(1— Wi+ (2p—1)j+ (u+ 2k
To Find : d

Formula :

1. Cross Product :

If3 & b are two vectors
a=a,i+a,j+ a}]T:

b =b,T+b,j+bsk

then,
7k
axb=la; a; a,
b, b, by

2. Dot Product:

If3 & b are two vectors

a=a,l+a,] +azk

b =b,i+baj+byk

then,

ab=(a;xby)+(a:x by)+ (agx b;)

3. Shortest distance between two lines :

The shortest distance between the skew linest = 3, }\b_z and

r=a,+ Abzis given by,

g |(BrxBy) G- a)
[b, x|

Answer:

Given lines,
F=A-1i+QA+1)j— A+ Dk
T=(1-wi+(@p-10j+ (n+ 2k
Above equations can be written as
r=(-1+]—k)+a(i+7-k)
F=(1—7+2k)+s(-+27+k)

Here,

4, =-i+]—k

b,=i+j—k



-

—j+2k

3

g:
b,=-142j+k

Therefore,

i
1
-1

k
-1
1

by xb, =

B = -

=i(1+2)-j(1- 1)+ k(2 +1)

~b, xb, =31 -0j + 3k
~ by xby| = /32 + 02+ 32
=V9+0+9

d=—— it

2 units
Question: 9
Solution:
Given equations :
r=(-j)+A(2i—k)
r=Qi-)+u(i-j—k)
ToFind :d
Formula :

1. Cross Product:

CLASS24




1f3 & b are two vectors

CLASS24

a=a,i+a,]+azk

b =b,i+b,j+bsk

then,
otk
ixb=la, a, a,
by, Dby by

2. Dot Product:

If3 & b are two vectors

-~

a=a,i+ajtazk
b =b,i+b.j+bsk

then,

ab=(a;xb;)+(a,xb,)
3. Shortest distance be

The shortest distance be

T = a, + Ab.is giv

T=

r=(2i—-j)

Here,

=i

b, =

I =2-]

b =

Therefore,

I L B

byxb,=f2 0 -1
1 -1 -1

L-a,=(2-1Di+(-1+1)j+(0- 0k

35 —a, =1+ 0j+ 0k




Now,

(b, xb,).(a; —a,) = (-1+j-2k).(i + 0f + 0k)
=((-Dx1)+(1x0)+((—-2)x0)
=-1+0+0

CLASS24

=-1

Therefore, the shortest distance between the given lines is

g - |(baxbe)-Ga= %)

[ [byxby
a=|=

NG
~d= 1
Ve

Ve
..d_6—
d= 6 i
—ﬁ—umts
Asd#0
Hence, the gi
Question:

Solution:

1. Cross Product:

If3 & b are two vectors

~

a=a,;i+a,]+azk
b =b,i+b,j+b,k
then,

B i j k
ixb= d; dp d3
by by b

2. Dot Product:

If3 & b are two vectors

i=a,i+a,j+azk




3. Shortest distance between two lines :
The shortest distance between the skew linesT = 3 + )\ITI and
r=a;+ A]_Tzis given by,

4o |Crxb2) (7 - &)
b, xb, |

Answer:

For given lines,

= (31— 15j + 9k) + A(2i — 7j + 5k)
f=(—i+j+9k)+p(2i+j—3Kk)
Here,

a, =3i- 15]+ 9k

b, =2i—-7j+5k

o
-

a=-1+]+9k

b, = 2i+j—3k

Therefore,

_ _ |ifi k

b, xb, =2/ =7 &
Y —3

=i(21 —5) —j(-6—10) + k(2 + 14)

~b,xb, =171 + 16j + 16k

= by xb;| = J17° + 167 + 177

V289 + 256 + 289

GL-a=(-1-3)i+(1+18)j+(9- 9k

~ 3 —a, = —4i+16f + 0k

(b, xb,).(a7 —a;) = (171 + 16] + 16k) . (—4i + 16 + 0k)
=(17x(—4))+(16x 16) + (16 x 0)

=-68+256+0

=188

Therefore, the shortest distance between the given lines is

(E X b-_z)(‘g_ 3_1)
[b, x by |

V834

188

d= units
VB34

|188|

Asd =0

CLASS24



Hence, the given lines do not intersect.
. CLASS24
Queslion: 11

Solution:

Given equations:

r = (21— 3k) +A(i + 2j + 3k)
t=(2i+ 6]+ 3k) + n(2i + 3j + 4k)
ToFind:d

Formula :

1. Cross Product :

If3 & b are two vectors
a=a,i+a,j+ask

b =b,i+b.j+byk

then,
I R
axb=|a, a, a;
b, b, Db

2. Dot Product :

If3 & b are twa vectors
a=a,i+a,j+azk

b =b,i+baj+ byk

then,

ab=(a; xby) +(asxby)t (agx by}

3. Shortest distance between two lines :

The shortest distance between the skew linest = 3, + }\b_1 and
r=a;+ )_bizis given by,

(b, xby) (@ - a)
[b, xb, |

d=

Answer:
For given lines,
t = (21— 3k) +A(i + 2§+ 3k)

i = (21 + 6] + 3k) + p(2i+ 3j + 4k)

Here,
a, =2i3k
b, =i+ 2j+ 3k

b, =2+ 3]+ 4k

Therefore,



i j k
12 3
2 3 4

b, xb, =

CLASS24

=i(12-9) —j(4—-6) + k(3 - 4)

~b, xb,=31+2]—k

N BN Ve
“Voa+a+1

=vVi2
IL-a=02-2)it(6-0)j+(3+3)k
~a; —a, =0i+ 6]+ 6k

Now,

(b xb;) (& —a) = (3i+ 2
=(3x0)+(2x6)+ ((~
=0+12-6
=6

Therefore, the s

Hence, the given
Question: 12
Solution:

Given equations::
F = (1+2)+3k) + A(2i + 3] + 4k
F=(4i+7) + p(5i + 2 + k)
ToFind:d

Formula:

1. Cross Product:

1If3 & b are two vectors

-~

i=a,i+a.j+ask

b =Db,i+b,j+bk

then,




2l

d

i j k

5o @ ay CLASS24
b, b, by

2. Dot Product:

If3 & b are two vectors

a=a,i+aj+ a;ﬁ

b =b,i+Db,j+byk

then,

a.b=(a; xb,)+(a, xb,)+ (a; x by)

3. Shortest distance between two lines :

The shortest distance between the skew linesT = a + Ab_l and

T = 3, + Ab,is given by,

4o |(Brxb2) .G - &)
[by x b

Answer:

For given lines,

= (i+2j+ 3Kk) + A(2i + 3j + 4k)
= (4i+17) + p(5i+ 2j + k)
Here,

i, =i+ 2j+3k

b, =2i +3j + 4k

i =41+]

b, =5i+2j+k

Therefore,

T 7k

by xb, =2 3 4
5 2 1

=i(3—8) —j(2—20) + k(4 — 15)

~b, x by = =51+ 18] — 11k

- [6 X

=J(-5)2+ 182 + (—11)2

v2h+ 324 +121

L-a, = (4-1)i+(1-2)j+(0-3)k

)

s, - =31-j-3k
Now,

(b, xb,).(a; —a;) = (—5i + 18] — 11k) .(31 — ] — 3k)
=((-5)x3) + (18x (~1)) + ((-11) x (-3))

=-15-18 + 33



CLASS24

Therefore, the shortest distance between the given lines is

4 |Crxbs) (& - )

|by x by
0
ca- Y
470
=~ d = 0 units

Asd=0

Hence, the given lines not intersect each other.

Now, to find point of intersection, let us convert given vector equations into Cartesian equations.
For that substitutingt = xi + yj + zk in given equations,

~L1: xi+yj+ 2k = (1 + 2§+ 3k) + A(21 + 3§ + 4k)

L2 xi+yj+zk=(4i+7)+ p(5i+ 25+ k)

AL1:(x— 1)+ (y—2)j+ (z—3)k =240 + 3A] + 42k

AL2:(x—4)i+ (y—1)j+ (z— 0)k = 5pi + 2pj+ ik

x—1 y—2 z-—-3
~L1: = =
2 3 it

Xx—4/y-1 z-0
5. 2 1

General pointon L1 is

=\

~ L2 : =L
X1 =2A+1,y1=3A+2,21 =4A+3
let, P(x41, ¥1, Z1) be point of intersection of twao given lines.

Therefore, point P satisfies equation of line L2.

2A+1—-4 3X+2-1 4X+3-0
- . 1

5
2A—-3 3A+1

5 2
= 4A-6=15A+5

=11A=-11

=A=-1

Therefore, xy = 2(-1)+1 ,y; =3(-1)+2,2, = 4(-1)+3
=>x1=-1,y1=-1,z1=-1

Hence point of intersection of given lines is (-1, -1, -1).
Question: 13

Solution:

Given equations :

t=(i+2j—4k)+A(2i+ 3j + 6k)

= (37 + 3] — 5k) + p(2i + 3j + 6k)

To Find : d



Formula :

CLASS24

1. Cross Product:
If 3 & b are two vectors
a=a,i+a.j+a;k

b =1b,i+b,j+bsk

then,
I R
axb=|a, a, a4
b, b, b,

2. Dot Product :

1f3 & b are two vectors

a=a;i+a,j+azk

b =b,i+b,j+bsk

then,

ab=(a;xb,)+(a, x

3. Shortestdi

T =(31+3] - 5k) +
Here,

a =i+2] 4k

b, = 21 +3j+ 6k

I = 3i+3j—5k

b, =21 + 3] + 6k
Asb; = b, = b (say) ,given linesare parallel to each other.

Therefore,

b =2i+3j+6k

~ bl =22 + 37+ 67
=V4+9+36
=49

=7

L-4,=0CB-1Di+3-2)j+(-5+4k




LA -4 =2i+j-k CLASS24

ik
@ —alxb=|2 1 —1
2 3 6

=i(6 +3) —j(12+2) + k(6 —2)

«(a; —a;)xb=9i—14j + 4k

@ )X B = Yo (18 4
=81+ 196 + 16

=+/293

Therefore, the shortest distance between the given lines is

1. Cross Produc

If3 & b are two vectors

a=a,i+a,j+azk
b =b,i+b,j+bsk

then,

I L
axb=la, a, a,
by, by by

2. Dot Product:

1f3 & b are two vectors

-~

a=a,1+a,]+azk

b =b,i+b,j+bsk

then,

ab=(a; x b))+ (a; xby)+ (azg x by)

3. Shortestdistance between two parallel lines :




|
The shortest distance between the parallel lines F = 3, + Ab and
T CLASS24

F=a,+ AD is given by,

|(az —a,)x b

d = E—
[b]

Answer:

For given lines,

t=(i+2j+3k)+A(i-j+k)

=il

=i-j-k)+u(i-j+k)
Here,

i, =1+ 2+ 3k

=v49+25+4
=78

Therefore, the shortest distanc

(Gt ERT

d =26 units

Question: 15

Solution:

Given : point A= (2,3, 2)

Equation of line 1 = (-21 + 3j) + A(21 - 3] + 6k)




T'o Find : i) equation of line
o CLASS24
ii) distance d
Formulae:

1. Equation of line :

Equation of line passing through point A (a1, az as) and parallel to vector b = xi +yj+ 2k is given
by

r=a+tab

%]

Where, 3 =a,1+a,j+ agll
2. Cross Product :

If3 & b are two vectors
a=a,i+a,j+ak

b =b,i+b.j+bk

then,
]t 7k
axb=Ja, a, ag
by by b,

3. Dot Product:

If3 & b are twao vectors

a=a,itat+azk

b =b,i+b,j+bsk

then,

ab=(a,xb)+(a xby)+(ayxb,)

4. Shortest distance between two parallel lines :

The shortest distance between the parallel lines ¢ = a,+ Ab and

T = 3. 4+ AD 15 given by,

[o]

Answer:

As the required line is parallel to the line

T = (—2i+ 3j) + A(2i - 3j + 6k)

Therefore, the vector parallel to the required line is
b =2i-3j+ 6k

Given point A = (2, 3, 2)

~a=2i+3j+2k

Therefore, equation of line passing through A and parallel to} is
F=3+ub

«T =(21+3j+ 2k) + p(2i — 3j + 6k)

Now, to calculate distance between above line and given line,



l
r— (21 + 3] + 2K) + p(2i — 3j + 6k) CLASS24

t = (—2i+3j) + A(21 — 3j + 6k)
Here,

a, = 2i+3j+ 2k

T, = 20+ 3

b =2i-3j+6k

ol =2 3y e
=V4+9+36

=V49

=7

L-a=(-2-21+(3-3)

-3, —a, = -4i+0j -2k

between the T‘L lines is

V580

d= units
7

Question: 16
Solution:
Given : Cartesian equations of lines

x—-1 y—-2 z+4

Ll = 3 6

x—3 y—3 z+5

Lz — 6 12

To Find : i) vector equations of given lines

ii) distance d




Formulae:

CLASS24

Equation of line passing through point A (a1, a3, az) and having direction ratios (b;, by, b3) is

1. Equation of line :

r=a+ab
Where, 3 = a,1+a,] + a;]TC
And b = b, + b,j+ bk

2. Cross Product:

If7 & b are two vectors
a=a,i+a.jtak

b = byi+b,j+bsk

then,
7k
axb=la; a, ag
by by by

3. Dot Product:

If3 & b are two vectors

ab=(a; xby)+ (a; x by) + (az x b,)
4. Shortest distance between two parallel lines :
The shortest distance between the parallel lines T = 3] + Ab and

F = 35+ Ab is given by,

4o |(a; - a)x b|
[of
Answer:

Given Cartesian equations of lines

L1x71y722+4
23 6

Line L1 is passing through point (1, 2, -4) and has direction ratios (2, 3, 6)
Therefore, vector equation of line L1 is

t=(i+2j— 4k)+A(2i+ 3] + 6k)

And

x—-3 y—-3 z+5

L2 : =
4 6 12

Line L2 is passing through point (3, 3, -5) and has direction ratios (4, 6, 12)

Therefore, vector equation of line L.2 is
F=(31+ 3] - 5k) + p(4i+ 6] + 12k)

~ T = (31+ 3j— 5k) + 2p(21 + 37 + 6k)



|
Now, to calculate distance between the lines,
CLASS24

r = (i+2j— 4k) + (21 + 37 + 6k)

t = (31 + 3] - 5k) + 2u(2i + 37 + 6k)

Here,
a, =i+2i- 4k
b, = 2i +3j+ 6k

i; = 3i+3j—5k
b, = 2i + 3] + 6k
As tTi = Fz =b (say) . given lines are parallel to each other.

Therefore,

b =2i+ 3]+ 6k
~|b] =22+ 32 +62
—V4+9+36

=81+ 196+ 16

=293

Therefore, the shortest distanc ven lines is

|(az —a;) % b|
d= T E——
|l
q- V293
7
d= 7 units

Question: 17
Solution:
Given : Cartesian equations of lines

x—-1 y-2 z-3

Ll = 3 4




x—2 y—3 z-—5

3 4 s CLASS24

I'o Find : i) vector equations of given lines

L2 :

ii) distance d
Formulae:
1. Equation of line :

Equation of line passing through point A (a,, a3, az) and having direction ratios (b;, by, b3) is

r=a+Ab
Where, 3 = a,1+ a,j + a3k
And b = b,i+b,j+bsk

2. Cross Product:

If3 & b are twao vectors
a=a,i+a,j+ a;]rc

b =b,T+ b,j+ bk

then,
B i j k
ixb= d; dp a3
b, b, by

3. Dot Product :

If3 & b are twao vectors

a=a,i+a,j+azk

b =b,i+b,j+bsk

then,

a.b=(a; xb)+(a xb,)+ (a; x by)

4. Shortest distance between two lines :

The shortest distance between the skew linest = 3, + MT‘; and
r=a;+ )\b_zis given by,

4o |®rxb:) G —a)
|bLXb2|

Answer:
Given Cartesian equations of lines

x—1 y—2 z-3

L1: > 3 2

Line 1.1 is passing through point (1, 2, 3) and has direction ratios (2, 3, 4)
Therefore, vector equation of line L1 is

r=(i+2j+3Kk) + (21 + 3§ + 4k)

And

x—2 y—-3 z-5

L2 =3 4 5




Line L2 is passing through point (2, 3, 5) and has direction ratios (3, 4, 5)

CLASS24

Therefore, vector equation of line L2 is

F = (31 + 37 + 5k) + p(3i + 4j + 5k)

Now, to calculate distance between the lines,
= (i+2j + 3k) + A(2i + 3j + 4k)

= (30 + 3] + 5k) + u(3i + 4j + 5k)

b, = 3i + 4] + 5k

Therefore,

i jk
2 3 4
3 4 5

by xb, =

=1i(15 - 16) —j

(by xb). (& —ap) = (
=((-Dx2)+(2x1)+
=-2+2-2

=.2

Therefore, the shortest distance between the given lines is

o | (2rxD2) .G — )
|b1’<b2|
—2
d:lﬁ|
2
~d=

5

v
G Gl @




d= 33 units CLA5524

Question: 18
Solution:
Given : Cartesian equatons of lines

x—-1 y+2 z-3
-1 1 =2

L1:

x—1 y+1 z+1
2 2 =2
To Find : distance d

LZ:

Formulae:
1. Equation of line :

Equation of line passing through point A (aq, az, az) and having direction ratios (b, by, bg) is

T=3a+ab
Where, 3 = a,i +a,j + a;k
And b =b,i+b,j+b.k

2. Cross Product :

If3 & b are two vectors

then,
o k
axb=la, a, ag
b; b, by

3. Dot Product:

If3 & b are two vectors

a=a,i+a,j+ angc

b =b,i+b,j+bsk

then,

ab=(a, xby)+(a, xb,)+ (a; x by)

4. Shortest distance between two lines :

The shortest distance between the skew linest = a, + )‘b_l and
r=a;+ Ab_‘,_is given by,

4 |(®rxbs) (@ - &)
|by x b

Answer:

Given Cartesian equations of lines



x-1 y+2 z-3
-1 1 -2

L1:

Line L1 is passing through point (1, -2, 3) and has direction ratios (-1, 1, -2)
Therefore, vector equation of line 1.1 is

F=(i-2j+3k)+A(-1+]— 2k)

And

x—1 y+1 z+1

L2 = 2 2

Line L2 is passing through point (1, -1, -1) and has direction ratios (2, 2, -2)
Therefore, vector equation of line L.2 is

= (i-j-k)+p(2i+2j-2k)

MNow, to calculate distance between the lines,

t=(1—2j+3k) + A(-1+7—2k)

r=(i—j—k)+pu(2i+2j - 2k)

Here,

i, =i—2j+ 3k

c=-i+j-2k

o

L,=i-j-k

b, =21+ 2j -2k

Therefore,

I I R

by xb=[-1 1 2
2 2 -2

=i(-2+4)—j(2+4) + k(-2 -2)

~by x b, =2i -6 — 4k

= |by xby| =22+ (-6)2 + (—4)?

=Va+36+16

L-a,=0-Di+(-1+2)j+(-1-3)k

nd;—a, =0i+]— 4k

Now,

(b, xb;).(a; - a,) = (21 - 6] — 4k) . (01 + ] - 4k)
=(2x0)+((—6)x 1} +((—4) x (—4))

=0-6+16

=10

Therefore, the shartest distance between the given lines is

(b, x by).(a; — &)
b, x b, |

CLASS24
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410
T k6

d 10 it
= — units
V56

Question: 19
Solution:

Given : Cartesian equations of lines

x—12 y—-1 z-5
-9 T 4 T 2

XxX—23 y—10 z-23
-6 -4 3
To Find : distance d

L2:

Formulae:

1. Equation of line :

Equation of line passing through point A (a;, a;, a3) and having direction ratios (by, by, b3) is
F=3a+Ab

Where, 3 = 2,1+ a,j + a;k

And b = b,i4b.j+bsk

2. Cross Product :

If3 & b are two vectors
a=a,i+a.j+ask

b =b,i+b,j+bsk

then,
I R
axb=1a, a, a,
by by by

3. Dot Product:

If3 & b are two vectors

=

a=a,i+a,j+azk
b =b,i+b,j+bsk

then,

a.b=(a, xb,)+ (@ xb,)+ (a; xby)

4. Shortest distance between two lines :

The shortest distance between the skew linest = 3] + M)_l and

T — 3, + b, is given by,




nsw
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Given Cartesian equations of lines

x—12 y-1 z-5

L1: = =
—9 4 2

Line L1 is passing through point (12, 1, 5) and has direction ratios (-9, 4, 2)
Therefore, vector equation of line 1.1 is
F= (121 +§ + 5k) + A(-91 + 4j + 2k)

And

Xx—23 y—10 z-—-23
-6 -4 3
Line L2 is passing through point (23, 10, 23) and has direction ratios (-6, -4, 3)

L2

Therefore, vector equation of line L.2 is
= (231 + 10j + 23k) + pu(—6i— 4j + 3k)
Now, to calculate distance between the lines,

T

(12 +7+ 5k) + A(-9i + 4j + 2k)

T = (231 + 107 + 23K) + p(~6i - 4j + 3k)

Here,

a, =121 +j4 5k

o

b, = —9i +4j + 2k
a; = 230+ 10j + 23k

b, = —6i —4j + 3k

Therefore,

| ik

by xb,=|[-9 4 2
-6 —4 3

=i(12 +8) —j(—27 +12) + k(36 + 24)

. x b, = 201 + 15] + 60k
~ |by x by | = /202 + 152 + 602
V400 + 225 + 3600

V4225

65

o]

—a; = (23-12)i+ (10— 1)j + (23 - 5)k

B

=3, —a; = 11i + 9] + 18k

Now,

(b; xb,).(@; —a;) = (201 + 15] + 60k) . (117 + 9] + 18k)
=(20x 11) + (15x 9) + (60 x 18)

=220+ 135+ 1080

=1435



Therefore, the shortest distance between the given lines is

4 |(Brxbs) (3 - a)
|b1><b2|

CLASS24

|1435
65
i 287
T 13

287

d = —— units
13

Exercise: 27E

Question: 1
Solution:
Given : Cartesian equations of lines

x—-3 y—-8 z-3

LL: 3 —1 1

x+3 y+7 z-6
Vi =y =
Formulae:

1. Condition for perpendicularity :

If line L1 has direction ratios (a;, as, az) and that of line L2 are (by, by, b3) then lines L1 and L2
will be perpendicular to each other if

(a; xb;)+ (@ xb.)+(az; xby)=0
2. Distance formula :

Distance between two points A=(a,, a;, a3) and B=(b,, b3, b3) is given by,

d=(@,—b)?+ (@ —b,)2+ (a3 b,)-
3. Equation of line :
Equation of line passing through points A=(x4, v1, z1) and B=(x3, y3, Z3) is given by,

XTXx Y7V ETnL

X% YVi—Y 4,7 I

Answer:

Given equations of lines

X—3 y—8 z—3
3 -1

L1:

x+3 y+7 z-6
-3 2 4
Direction ratios of L1 and L2 are (3, -1, 1) and (-3, 2, 4) respectively.

L2:

Let, general point on line L1 is P=(x4, y1, 1)
x1=35+3,y1=-5+8,%1 =5+3
and let, general point online L2 is Q=(x2.v2.23)

Xg=-3t-3,y;=2t-7,2;,=4t+ 6



2 PQ = (X, — x4+ (v, —y)i+ (z —z))k
=(-3t-3-35-3)i+(2t—=7+s-8)j+ (4t+ 6 -5 — 3)k
~PQ=(-3t—3s—6)i+ (2t +s—15)]+ (4t —s + 3)k

Direction ratios ofm are ((-3t-3s5-6),(2t+s-15), (4t-s+ 3))
PQ will be the shortest distance if it perpendicular to bath the given lines
Therefore, by the condition of perpendicularity,

3(-3t-35-6) -1{2t+s5-15)+ 1(4t-s+3) =0 and
3(-3t-3s-06)+2(2t+s5-15)+4(4t-s5+3)=0

= -9t-95-18-2t-s+ 15+ 4t-s+3=0and

9t+9s+ 1B+ 4t +25-30+ 16t -4s+12=0

= -7t-11s = 0 and

29t + 7s=10

Solving above two equatians, we get,

t=0ands=0

therefore,

P=(3,8,3)and Q = (-3, -7, 6)

Now, distance between points P and Q. is

d=(3+3)2+(6+7)2+(3—6)°

=J(6)2+(15)* + (-3)*
=36 +225+9
=270

=3V30

Therefore, the shortest distance between twao given lines is

d = 3v30 units

Now, equation of line passing through points P and Q is,

X—% ¥y ¥y 7

Xy, =X ¥Mi—~Y2 4L17%

x—3 y—8 z-3
"3+3 847 3-6

x—3 y—-8 z-3
T 6 15 -3

Xx—3 y—8 z-—3
T2 T 5 T~

Therefore, equation of line of shortest distance between two given lines is

x—3 y—8 z-—-3
2 5 -1

Question: 2

Solution:

CLASS24



Given : Cartesian equations of lines

x—3 y—4 z+2

L1:
—1 2 1
x—1 +7 z4+2
L2 : — y —
1 3 2
Formulae:

1. Condition for perpendicularity :

CLASS24

Ifline L1 has direction ratios (a;, az, a3) and that of line L2 are (b;, by, b3) then lines L1 and L2

will be perpendicular to each other if
(a; xby)+ (a, xby) +(azxby)=0
2. Distance formula :

Distance between two points A=(a,, as, az) and B=(b, b3, b3) is given by,

d= \/(al - bl)z + (32 7b2)2 + (33 — bg):
3. Equation of line :
Equation of line passing through points A=(x1, v1. z1) and B=(xy, v, Z2) is given by,

X=X Y%z 4

X—% ¥~y 7, I

Answer:
Given equations of lines

x—3 —4 z+42
Ll: :y——: =

-1 2 1
x—1 wy+7 z+2

L2: = =
1 3 2

Direction ratios of L1 and L2 are (-1, 2, 1) and (1, 3, 2) respectively.
Let, general point on line L1 is P=(x,, vy, z1)

x1=-5+3,y1 = 2s+4 ,z| =s5-2

and let, general point on line L2 is Q=(x3,v3,23)

Xo=t+1,y,=3t-7 ,2,=2E-2

~PQ= (X, —x )+ (y2 —y)) + (2, — 21)R
=(t+1+s5—3)i+(3t—7-2s—4)]+(2t—2—s5+2)k
~PQ=(t+s—2)i+(3t— 25— 11)j+ (2t — )k

Direction ratios of PQ are ((t +s - 2), (3t-2s-11), (2t-5]))
PQ will be the shortest distance if it perpendicular to both the given lines
Therefore, by the condition of perpendicularity,
“A(t+s-2)+2(3t-2s-11) + 1(2t—s) = 0 and
1t+s-2)+3(3t-2s-11) + 2(2t—s) =0
=-t-s+2+6t—4s - 22+ 2t—s =0and
t+s-2+9t-65-33+4t-25=0

= 7t-6s5=20and

14t - 7s = 35



Solving above two equations, we get,
t=2ands=-1

therefore,

P=(4,2,-3)and Q = (3, -1, 2)

Now, distance between points P and Q is

d=J(4-3)2+(2+1)2+(—3—2)2

= V(DT + B3+ (-5)2
=v1+9+25

=35

Therefore, the shortest distance between two given lines is
d = V35 units
Now, equation of line passing through points P and Q is,

X=X Y= ¥, ZI—%4

L% ¥Vi—Y 7,75

X—4 y-—2 Zgind
"4-3 241 -3-2

x—4 y—2 z+3
1 3 -5

x—4 y—2 z+3
-1 =3 b
Therefore, equation of line of shortest distance between two given lines is
x—4 y—2 2+3

-1 -3 5

Question: 3

Solution:
Given : Cartesian equations of lines

x+1 y-1 z-9

L1: = =
2 1 —3
x—3 y+15 z-—9
L2 : = =
2 -7 5
Formulae:

1. Condition for perpendicularity :

CLASS24

If line L1 has direction ratios (a;, a, az) and that of line L2 are (by, by, b3) then lines L1 and L2

will be perpendicular to each other if
(a; xb;)+ (a;xby)+(azxby)=0
2. Distance formula :

Distance between two points A=(a,, a;, az) and B=(b, bz, bz) is given by,

d= \/(31* b)2+(a; —b,)?+ (a3 —by)?

3. Equation of line :

Equation of line passing through points A=(x1, v1, Z1) and B=(xg, v2, Z3) is given by,



X—x, ¥y -7

X, 7% ¥Vi7¥Y2 47 %;

Answer:

Given equations of lines

x+1 y—-1 z-—9
L1: = =
2 1 -3
Xx—3 y+15 z-—9
2 -7 5
Direction ratios of L1 and L2 are (2, 1, -3) and (2, -7, 5) respectively.

L2 :

Let, general point on line L1 is P=(x,, vy, 1)
x1=2s8-1,y1=s5+1,z1=-35+9

and let, general point on line L2 is Q=(x3.v2.23)

Xo =243,y =-7t - 15,2, =5t + 9

~PQ = (X —x )i+ (¥ —yu)j + (2, — Zl)f{

=(5t+9-2s+1)i+ (7t 15-5-1)j+(5t+9+3s 9k

= PQ=(5t—2s+ 10)i+ (7t —s — 16)] + (5t4 3s)k

Direction ratios of P() are ((5t- 2s + 10), (-7t —s - 16), (5t + 35))
PQ will be the shortest distance if it perpendicular to both the given lines
Therefore, by the condition of perpendicularity,

2(5t-25+10) + 1(-7t-s-16) - 3(5t+ 3s5) = D and

2(5t-2s +10) — 7(-7t —s — 16) + 5(5t + 3s) = 0

= 10t-4s+ 20-7t-s-16- 15t - 95 = 0 and

10t-4s + 20+ 49t + 7s + 112 + 25t + 155 =0

=-12t - 14s=-4and

84t + 18s = -132

Solving above two equations, we get,

t=-Zands=2

therefore,

P=(3,3,3)and Q = (-1, -1, -1)

Now, distance between points P and Q is

d=J/(B+1)2+ B3+ 1)2+(3+1)2

=J(®)2+(4)2+ (4)
=V16+16+16

= V48

-~ 43

Therefore, the shortest distance between two given lines is

d = 43 units

Now, equation of line passing through points P and Q is,

CLASS24



X—x, ¥y -7

X, 7% Vi7¥Y2 %47 %

x—-3 y—-3 z-3
“3+1 3+1 3+1

x—3 y—3 z—3
T4 4 4

“X—3=y—3=z—3

=X=y=1z

Therefore, equation of line of shortest distance between two given lines is
X=y=2

Question: 4

Solution:

Given : Cartesian equations of lines

x—-6 y-7 z-—4
e =" =7

X y+9 z-2
L2 : — = —— = -
- 2 4

Formulae:

1. Condition for perpendicularity :

CLASS24

Ifline L1 has direction ratios (a;, ay az) and that of line L2 are (by, by, b3) then lines L1 and L2

will be perpendicular to each other if
(a; xby)+(a;xb,)+(agxby) =0
2. Distance formula :

Distance between two peints A=(a, a», az) and B=(b,, b3, b3) is given by,

d= J(‘H —by)2+ (3: =bo)*+ (@ — b;)*
3. Equation of line :
Equation of line passing through points A=(x1, ¥1, 21) and B=(x3, v2, Z3) is given by,

-5 ¥y -7

X=X ¥~ Y 2,7 %;

nswer:

Given equations of lines

L %6 _y-7 _z-4
3 -1
X +9 z-2
LZ:—:y—:
—3 2 4

Direction ratios of L'l and L2 are (3, -1, 1) and (-3, 2, 4) respectively.
Let, general point on line L1 is P=(x4, y1, 1)

X1 =35+6,y1=-5+7,2, =s+4

and let, general point on line L2 is Q=(x3,v2,23)

Xp=-3t,yz=2t-9,z;,=4t+ 2



2PQ = (X, — x4+ (v, —y)i+ (z —z))k

=(-3t—3s-6)i+ (2t—9+s—-7j+ (4t +2 - s - Dk
2PQ=(-3t-35—6)i+ (2t+s—16)] + (41 —s — 2)k

Direction ratios of PQ are ((-3t - 3s - 6), (2t + s - 16), (4t - s - 2})
PQ will be the shortest distance if it perpendicular to bath the given lines
Therefore, by the condition of perpendicularity,
3(-3t-35-6)-1(2t+s -16) + 1(4t-s5-2) =0 and
-3(-3t-35-6) +2(2t+s - 16) + 4(4t—-s - 2) =0
=-9t-95-18-2t-s+ 16+ 4t-s -2 =0and
9t+9s+18+4t+25-32+16t-4s5s-8=0

= -7t-11s =4 and

29t + 7s = -22

Solving above two equatians, we get,

t=lands=-1

therefore,

P=(3,8,3)and Q = (-3, -7, 6)

Now, distance between points P and Q. is

d=/(3+3)2+(6+7)2+(3—6)°

=J(6)2+(15)* + (-3)*
=36 +225+9
=270

=3V30

Therefore, the shortest distance between two given lines is

d = 3y30 units

Now, equation of line passing through points P and Q is,

X—% ¥y -7

X, =X YMi7Y2 4177

x—3 y—8 z-3
"3+3 847 3-6

x—3 y—-8 z-3
T 6 15 -3

Therefore, equation of line of shortest distance between two given lines is

x—3 y—8 z-—-3
2 5 -1

Question: 5

Solution:

CLASS24



Given : Cartesian equations of lines

CLASS24

X -2 z+3
Ll:—:y—:
1 2 3

x—2 y—6 z-—3
2 3 4
To Find : distance d

L2:

Formulae:

1. Equation of line :

Equation of line passing through point A (a;, a3, az) and having direction ratios (by, by, b3) is
r=a+aib

Where, 3 = a,i + a,j + a3k
And b = b,i+b,j+bsk

2. Cross Product:

If3 & b are two vectors

then,
B i j k
axb=la, a, a;
by by Dby

3. Dot Product :

If3 & b are two vectors

)

a=a;itajtazk

el

b =b,T+ b,j+ by
then,

a.b=(a; xb;)+(a, xby) + (a3 x by)

4. Shortest distance between two lines :

The shortest distance between the skew linest = 3; + )\h_l and
I = a, + Ab,is given by,

(b, x by).(3;— 1)

A I AT

Answer:
Given Cartesian equations of lines

L1 X y—2 z+3
1 2 3

Line L1 is passing through point (0, 2, -3) and has direction ratios (1, 2, 3)
Therefore, vector equation of line L1 is
= (0i+2j— 3k) + A(i+ 2] + 3K)

And



Xx—2 y—-6 z—-3

L2:— 3 4

Line L2 is passing through point (2, 6, 3) and has direction ratios (2, 3, 4)

Therefore, vector equation of line L2 is
t = (21+ 6]+ 3Kk) + p(2i + 3j + 4k)

Now, to calculate distance between the lines,
r = (0i + 2] — 3k) + A(i+ 2j + 3K)

= (2 + 6]+ 3k) + p(21 + 3j + 4Kk)

Here,

i, = 0i+ 2j— 3k

b, =i+2j+3k

a; = 2i+6j + 3k

b, = 2i + 3] + 4k

Therefore,

R LU

by xb,=|1 2.3
2 3 4

=i(8-9)—j(4 - 6) + k(3 — 4)

2byxb,=—i+2]—k

= [byxb =y D+ 22 4 (1)F
_ViTaTl

HLoa,=2-0)i+t(6 2)j+(3+3)k

.3, — &, =20+ 4j+ 6k

Now,

(by xb;).(a; —a,) = (-1 +2] — k) .(2i + 4j + 6k)
=((-Dx2)+(2x4)+ (-1} x6)

=-2+8-6

=0

Therefore, the shartest distance between the given lines is

‘(b_lxb_z)-(a_:—éﬂ)

[by x b,
o=kl
V14
-~ d = 0 units
Asd=0

Hence, given lines intersect each other.

Now, general point on L1 is

CLASS24



X1=A,y1=2A+2,2, = 3A-3

let, P(x41. ¥1, Z1) be point of intersection of two given lines.

Therefore, point P satisfies equation of line L2.
A-2 22+2-6 3X-3-3

o2 3 a 4
A—2 2)2-—-4

2 3
=3A-6=42-8

=A=2

Therefore,x1=2,y1=2(2)+2,2z1 = 3(2)-3
=>x1=2,y1=06,z1=3

Hence point of intersection of given lines is (2, 6, 3).
Question: 6

Solution:

Given : Cartesian equations of lines

x—1 y+1 z-1

LT =3 2 5

2 3 2
To Find : distance d

x—2 —1 z+1
L2 : :y = =

Formulae:

1. Equation of line :

CLASS24

Equation of'line passing through point A (a1, a;, a3) and having direction ratios (by. by, b3) is

F=3+Ab

Where, 3 = a,i + a,j + a;k
And b =b,i+b,j+ bk

2. Cross Product :

If3 & b are two vectors

a=a,i+a,j+azk

b =b,i+b,j+bsk

then,
7k
axb=la, a, a
b, b, Db;

3. Dot Product:
If3 & b are two vectors
a—a,i+a,j+a;k

b =b,T+ba.j+byk

then,



E.BZ(RIXb1)+(H:Xb2)+(a3Xb3) CLASSZ4

4. Shortest distance between two lines :
The shortest distance between the skew linest = a, + MTl and
F = 35 + Ab.is given by,

_|(by xby) (@ — &)
- [b, x b,

Answer:
Given Cartesian equations of lines

x—-1 y+1 z-1

L1: = =
3 2 5

Line L1 is passing through point (1, -1, 1) and has direction ratios (3, 2, 5)
Therefore, vector equation of line L1 is

F=(i—j+k)+A(31+ 2j + 5k)

And

Xx—2 y—1 z+1
L2 : = — 4=
2 3 =2

Line L2 is passing through peint (2, 1, -1) and has direction ratios (2, 3, -2)
Therefore, vector equation of line L2 is

t=(20+j+k)+np(2i+ 3§ 2k)

Now, to calculate distance between the lines,

r=(i—-j+k)+A(30+ 2] +5k)

= (21 +7—k) + p(2i + 3] - 2k)

=il

Here,
a=i-j+k
b, = 3i +2j + 5k
;L =2i+j-k

b, =2+ 3] -2k

Therefore,

]k

by xb,=[3 2 5
2 3 -2

=i(—4 —15) —j(—6— 10) + k(9 — 4)

~b, xb, = —191 + 16j + 5k

by xby| = J(~19)2 + 162 + 52

v361 + 256 + 25

L-3,=02-Di+(1+1Dj+(-1- Dk

~a; — 4 :i+21—2f(



o CLASS24

(b, xb,).(a; —a,) = (191 + 16] + 5k) . (i + 2j — 2k)
=((-19)x 1) +(16x2)+(5x(—-2))
=-19+32-10

=3

Therefore, the shortest distance between the given lines is

g |Crxba) (& - &)

b oy xby]
3
SRS
642
d 3 it
S~ = —(—= uniis
V642
Asd=0

Hence, given lines do no
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