Chapter: 30. BAYES'S THEOREM AND ITS APPLICATIONS

Exercise: 30

Question: 1

Solution:

Let

D: Bulb is defective

We want to find P(C|D), i.e. probability that the selected defective bulb is manufactured by C

$$P(C|D) = \frac{P(C).P(D|C)}{P(A).P(D|A) + P(B).P(D|B) + P(C).P(D|C)}$$

Where, P(A) = probability that bulb is made by machine A = $\frac{60}{100}$

P(B) = probability that bulb is made by machine B = $\frac{25}{100}$

P(C) = probability that bulb is made by machine $C = \frac{15}{100}$

P(D|A) = probability of defective bulb from machine $A = \frac{1}{100}$

P(D|B) = probability of defective bulb from machine $B = \frac{2}{100}$

P(D|C) = probability of defective bulb from machine $C = \frac{1}{100}$

$$P(C|D) = \frac{15}{60 + 50 + 15}$$

$$=\frac{15}{125}$$

$$=\frac{3}{25}$$

Conclusion: Therefore, the probability of selected defective bulb is from machine C is $\frac{3}{25}$

Question: 2

Solution:

Let S: Standard quality

We want to find P(A|S), i.e. probability that selected standard scooter is from plant A

$$P(A|S) = \frac{P(A).P(A|S)}{P(A).P(S|A) + P(B).P(S|B)}$$

Where, P(A) = probability that scooter is from A = $\frac{80}{100}$

P(B) = probability that scooter is from $B = \frac{20}{100}$

P(S|A) = probability that standard scooter from $A = \frac{85}{100}$

P(S|B) = probability that standard scooter from $B = \frac{65}{100}$

$$P(A|S) = \frac{(80)(85)}{(80)(85) + (20)(65)}$$

CLASS24

$$=\frac{6800}{6800+1300}=\frac{68}{81}$$

Conclusion: Therefore, the probability of selected standard scooter is from plant A is $\frac{68}{91}$

Question: 3

Solution:

Let, T:students taller than 1.75

B: Boys in class

G: Girls in class

We want to find P(G|T), i.e. probability that selected taller is a girl

$$P(G|T) = \frac{P(G).P(T|G)}{P(G).P(T|G) + P(B).P(T|B)}$$

$$=\frac{\left(\frac{60}{100}\right)\!\left(\frac{1}{100}\right)}{\left(\frac{60}{100}\right)\!\left(\frac{1}{100}\right)+\left(\frac{40}{100}\right)\!\left(\frac{4}{100}\right)}$$

$$=\frac{60}{220}=\frac{3}{11}$$

Conclusion: Therefore, the probability of selected taller student is a girl is $\frac{3}{11}$

Question: 4

Solution:

Let, I: students having IQ more than 150

B: Boys in the class

G: Girls in the class

We want to find P(B|I) i.e. probability that selected student having IQ greater than 150 is a boy

$$P(B|I) = \frac{P(B).P(I|B)}{P(G).P(I|G) + P(B).P(I|B)}$$

$$=\frac{\binom{60}{100}\binom{5}{100}}{\binom{60}{100}\binom{5}{100}+\binom{40}{100}\binom{10}{100}}$$

$$=\frac{300}{300+400}=\frac{3}{7}$$

Conclusion: Therefore, the probability that selected student having IQ greater than 150 is a boy is $\frac{3}{2}$

Question: 5

Solution:

Let MG: Men having grey hair

WG: Women having grey hair

G: Having grey hair

We want to find P(MG|G), i.e. probability of a randomly selected grey person to be male

$$P(MG|G) = \frac{P(MG).P(G|MG)}{P(MG).P(G|MG) + P(WG).P(G|WG)}$$

$$=\frac{\binom{1}{2}\binom{5}{100}}{\binom{1}{2}\binom{5}{100}+\binom{1}{2}\binom{0.25}{100}}$$

$$=\frac{5}{5.25}$$

$$=\frac{20}{21}$$

Conclusion: Therefore, the probability of a randomly selected grey person to be male is $\frac{20}{21}$

Question: 6

Solution:

Let F: First group

S: Second group

N: Introducing a new product

We want to find P(S|N), i.e. new product introduced by the second group

$$P(S|N) = \frac{P(S).P(N|S)}{P(S).P(N|S) + P(F).P(N|F)}$$

$$=\frac{(0.4)(0.3)}{(0.6)(0.7)+(0.4)(0.3)}$$

$$=\frac{0.12}{0.54}$$

$$=\frac{2}{9}$$

Conclusion: Therefore, the probability of the second group introduced a new product is $\frac{2}{3}$

Question: 7

Solution:

Let R: Red ball

W: White ball

A: Bag A

B: Bag B

Assuming, selecting bags is of equal probability i.e. $\frac{1}{2}$

We want to find P(A|W), i.e. the selected white ball is from bag A

$$P(A|W) = \frac{P(A).P(W|A)}{P(A).P(W|A) + P(B).P(W|B)}$$

$$=\frac{\left(\frac{1}{2}\right)\left(\frac{1}{7}\right)}{\left(\frac{1}{2}\right)\left(\frac{1}{7}\right)+\left(\frac{1}{2}\right)\left(\frac{4}{7}\right)}$$

$$=\frac{1}{5}$$

Conclusion: Therefore, the probability of selected white ball is from

bag A is $\frac{1}{5}$

Question: 8

Solution:

Let W: White ball

B: Black ball

X:1st bag

Y : 2nd bag

Assuming, selecting bags is of equal probability i.e. $\frac{1}{3}$

We want to find P(X|W), i.e. probability of selected white ball is from the 1^{st} bag

$$P(X|W) = \frac{P(X).P(W|X)}{P(X).P(W|X) + P(Y).P(W|Y)}$$

$$=\frac{\left(\frac{1}{2}\right)\left(\frac{3}{7}\right)}{\left(\frac{1}{2}\right)\left(\frac{3}{7}\right)+\left(\frac{1}{2}\right)\left(\frac{5}{11}\right)}$$

$$=\frac{\frac{3}{7}}{\frac{3}{7}+\frac{5}{11}}$$

$$=\frac{33}{68}$$

Conclusion: Therefore, the probability of selected white ball is from the 1st bag is $\frac{33}{68}$

Question: 9

Solution:

Let G: Gold coins

S: Siler coins

A:1st box

 $B: 2^{\mathrm{nd}} \mathrm{box}$

Assuming, selecting bags is of equal probability i.e. $\frac{1}{2}$

We want to find P(B|G), i.e. probability of selected gold coin is from the 2^{nd} box

$$P(B|G) = \frac{P(B).P(G|B)}{P(A).P(G|A) + P(B).P(G|B)}$$

$$=\frac{\left(\frac{1}{2}\right)\left(\frac{1}{7}\right)}{\left(\frac{1}{2}\right)\left(\frac{1}{7}\right)+\left(\frac{1}{2}\right)\left(\frac{4}{7}\right)}$$

$$=\frac{1}{5}$$

Conclusion: Therefore, the probability of selected gold coin is from the 2^{nd} box is $\frac{5}{9}$

Question: 10

Solution:

let A: Ball drawn from bag A

B: Ball is drawn from bag B

C: Ball is drawn from bag C

R: Red ball

W : White ball

Assuming, selecting bags is of equal probability i.e. $\frac{1}{2}$

We want to find P(A|R), i.e. probability of selected red ball is from bag A

$$P(A|R) = \frac{P(A).P(R|A)}{P(A).P(R|A) + P(B).P(R|B) + P(C).P(R|C)}$$

$$=\frac{\left(\frac{1}{3}\right)\left(\frac{6}{10}\right)}{\left(\frac{1}{3}\right)\left(\frac{6}{10}\right)+\left(\frac{1}{3}\right)\left(\frac{2}{8}\right)+\left(\frac{1}{3}\right)\left(\frac{1}{6}\right)}$$

$$=\frac{\binom{3}{5}}{\binom{3}{5}+\binom{1}{4}+\binom{1}{6}}=\frac{36}{61}$$

Conclusion: Therefore, the probability of selected red ball is from bag A is $\frac{36}{61}$

Question: 11

Solution:

let A: Ball drawn from bag A

B: Ball is drawn from bag B

C: Ball is drawn from bag C

BB: Black ball

WB : White ball

Assuming, selecting bags is of equal probability i.e. $\frac{1}{3}$

We want to find P(A|W), i.e. probability of selected White ball is from bag A

$$P(A|W) = \frac{P(A).P(W|A)}{P(A).P(W|A) + P(B).P(W|B) + P(C).P(W|C)}$$

$$=\frac{\left(\frac{1}{3}\right)\left(\frac{2}{5}\right)}{\left(\frac{1}{3}\right)\left(\frac{2}{5}\right)+\left(\frac{1}{3}\right)\left(\frac{3}{5}\right)+\left(\frac{1}{3}\right)\left(\frac{4}{5}\right)}$$

Solution:

 $=\frac{2}{9}$

CLASS24

Conclusion: Therefore, the probability of selected white ball is from bag A is $\frac{2}{9}$

Question: 12

Solution:

let A: Ball drawn from bag A

B: Ball is drawn from bag B

C: Ball is drawn from bag C

BB: Black ball

WB: White ball

RB: Red ball

Assuming, selecting bags is of equal probability i.e. $\frac{1}{3}$

We want to find P(B|WR) i.e. probability of selected White and red ball is from bag B

$$=\frac{\left(\frac{1}{3}\right)\left(\frac{3}{5}\right)}{\left(\frac{1}{3}\right)\left(\frac{2}{5}\right)+\left(\frac{1}{3}\right)\left(\frac{3}{5}\right)+\left(\frac{1}{3}\right)\left(\frac{1}{6}\right)}=\frac{6}{11}$$

Conclusion: Therefore, the probability of selected white and red ball from bag B is $\frac{6}{11}$

Question: 13

Solution:

Let A: Ball is drawn from bag A

B: Ball is drawn from bag B

C: Ball is drawn from bag C

BB: Black ball

WB: White ball

RB: Red ball

Probability of picking 2 white balls fro urn A = $\frac{7c2}{10c2}$ = $\frac{21}{45}$

Probability of picking 2 white balls fro urn B = $\frac{4c^2}{10c^2} = \frac{6}{45}$

Probability of picking 2 white balls fro urn $C = \frac{2c2}{10c2} = \frac{1}{45}$

We want to find the probability of 2 white balls picked from urn C

$$= \frac{(0.2)\left(\frac{1}{45}\right)}{(0.2)\left(\frac{21}{45}\right) + (0.6)\left(\frac{6}{45}\right) + (0.2)\left(\frac{1}{45}\right)}$$

$$=\frac{1}{40}$$

Conclusion: Therefore, the probability of both selected white balls are from urn C is $\frac{1}{40}$

Question: 14

Let A: the set of first 3 bags

B: a set of next 2 bags

Solution: WB: White ball

CLASS24

BB: Black ball

Now we can change the problem to two bags, i.e. bag A containing 15 white and 9 black balls(5 white and 3 black in each bag) and bag B containing 4 white and 8 black balls(2 white and 4 black balls in each bag)

Probability of selecting bag A is $\frac{3}{5}$ (3 bags are in A) and selecting B is $\frac{2}{5}$ (2 bags are in B)

We want to find the probability of selected white ball is from bag A

$$P(A|WB) = \frac{P(A).P(WB|A)}{P(A).P(WB|A) + P(B).P(WB|B)}$$

$$=\frac{\binom{3}{5}\binom{15}{24}}{\binom{3}{5}\binom{15}{24}+\binom{2}{5}\binom{4}{12}}$$

$$=\frac{45}{61}$$

Conclusion: Therefore, the probability of selected white ball is from the first group is $\frac{45}{61}$

Question: 15

Solution:

Let A: Ball drawn from bag A

B: Ball is drawn from bag B

C: Ball is drawn from bag C

D: Ball is drawn from bag D

BB: Black ball

WB: White ball

RB: Red ball

Assuming all boxes have an equal probability for picking i.e. $\frac{1}{4}$

We want to find P(A|RB), i.e. probability of selected red ball is from box A

$$P(A|RB) = \frac{P(A).P(RB|A)}{P(A).P(RB|A) + P(B).P(RB|B) + P(C).P(RB|C) + P(D).P(RB|D)}$$

$$=\frac{\left(\frac{1}{4}\right)\left(\frac{1}{10}\right)}{\left(\frac{1}{4}\right)\left(\frac{1}{10}\right)+\left(\frac{1}{4}\right)\left(\frac{6}{10}\right)+\left(\frac{1}{4}\right)\left(\frac{8}{10}\right)+\left(\frac{1}{4}\right)\left(\frac{0}{10}\right)}$$

$$=\frac{1}{15}$$

Conclusion: Therefore, the probability of selected red ball is from box A is $\frac{1}{15}$

Question: 16

Let X : Car produced from plant X

Y: Car produced from plant Y

S: Car rated as standard quality

We want to find P(X|S), i.e. selected standard quality car is from plant X

Solution:

$$P(X|S) = \frac{P(X).P(S|X)}{P(X).P(S|X) + P(Y).P(S|Y)}$$

$$=\frac{\left(\frac{70}{100}\right)\left(\frac{80}{100}\right)}{\left(\frac{70}{100}\right)\left(\frac{80}{100}\right) + \left(\frac{30}{100}\right)\left(\frac{90}{100}\right)}$$

$$=\frac{56}{83}$$

Conclusion: Therefore, the probability of selected standard quality car is from plant X is $\frac{56}{83}$

Question: 17

Solution:

Let M: Motorcycle

S: Scooter

A: Accident vechicle

We want to find P(M|A), i.e. probability of accident vehicle was a motorcycle

$$P(M|A) = \frac{P(M).P(A|M)}{P(M).P(A|M) + P(S).P(A|S)}$$

$$=\frac{\left(\frac{3000}{5000}\right)(0.02)}{\left(\frac{3000}{5000}\right)(0.02)+\left(\frac{2000}{5000}\right)(0.01)}$$

$$=\frac{6}{8}$$

$$=\frac{3}{4}$$

Conclusion: Therefore, the probability of accident vechile was motorcycle is $\frac{3}{4}$

Question: 18

Solution:

Let A: Manufactured from machine A

B: Manufactured from machine B

C: Manufactured from machine C

D: Defective bulb

We want to find P(A|D), i.e. probability of selected defective bulb is from machine A

 $P(A|D) = \frac{P(A).P(D|A)}{P(A).P(D|A) + P(B).P(D|B) + P(C).P(D|C)}$

$$= \frac{\left(\frac{60}{100}\right)\left(\frac{1}{100}\right)}{\left(\frac{60}{100}\right)\left(\frac{1}{100}\right) + \left(\frac{30}{100}\right)\left(\frac{2}{100}\right) + \left(\frac{10}{100}\right)\left(\frac{3}{100}\right)}$$
$$= \frac{6}{15}$$
$$= \frac{2}{-}$$

Conclusion: Therefore, the probability of selected defective bulb is from machine A is $\frac{2}{5}$

